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5. Geometry of Logarithms, Powers and Roots
5.5 ⋆⋆⋆
Let us first look at eaeb.

eaeb = ea(1 + b+
b2

2!
+ . . .) = ea + eab+

eab2

2!
+ . . .+

eabk

k!
+ . . .

=
∞∑
n=0

an

n!
+

∞∑
n=0

anb

n!
+ . . .+

∞∑
n=0

anbk

n!k!
+ . . .

=

∞∑
k=0

( ∞∑
n=0

anbk

n!k!

)

Now consider ea+b.We are given that the coefficient of apbq in (a + b)n is
n!
p!q! . But we know that p+ q = n. So let p = n− q, then

(a+ b)n =
n∑
k=0

n!

k!(n− k)!
an−kbk (1)

Then we have that

ea+b =

∞∑
n=0

(a+ b)n

n!
=

∞∑
n=0

(
n∑
k=0

1

k!(n− k)!
an−kbk

)

To see that this is the same as for eaeb, let us consider what the above sum
means. Suppose we fix k = i. This will only exist when i ≤ n. Then the
sum becomes

∞∑
n=i

1

i!(n− i)!
an−ibi =

∞∑
q=0

1

i!q!
aqbi

using q ≡ n − i. But the above must be summed over all k, not just for
k = i. And as n has range to ∞, so must k. So

ea+b =

∞∑
n=0

(
n∑
k=0

1

k!(n− k)!
an−kbk

)
=

∞∑
k=0

∞∑
q=0

1

k!q!
aqbk = eaeb
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6. Real-number calculus
6.1 ⋆
Suppose x > 0. Then |x| = x, and so

θ(x) =
x+ x

2x
= 1

If x < 0, then |x| = −x, and so

θ(x) =
−x+ x

2x
= 0

6.2 ⋆⋆⋆
The technique to prove this is almost identical to that in problem [6.4],
which we have worked out in detail.

6.3 ⋆
It seems that the relevant rules are in the beginning of section 6.5, rather
than at the end.

To show this, we simply differentiate, then set to 0. Then differentiate again
and again set to zero, etc. In this way we get each of the coefficients an. So
iff f(x) = a0 + a1x + a2x

2 + . . . then obviously f(0) = a0. Differentiating
once,

df(x)
dx = a1 + 2a2x+ 3a3x

2 + . . .

So then f ′(0) = a1. To get the nth term, we evidently have to differentiate
n times and set to zero.

dnf(0)
dxn = n(n− 1)(n− 2) . . . 1 · an + (n+ 1) · n · (n− 1) . . . 1an+10 + . . .

= n!an

and so
an =

f (n)(0)

n!
.

6.4 ⋆⋆⋆
To show that the function

f(x) = e−
1
x2

5



is C∞ we need to show that each of its derivatives is continuous. Iff we
differentiate once, we get

df(x)
dx =

2e−
1
x2

x3

If we differentiate more often, we will see a pattern: each derivative is a sum
of terms of the form Ax−ne−

1
x2 where A is some constant. Indeed

d
dx

(
e−

1
x2

xn

)
=

2e−
1
x2

xn+3
− ne−

1
x2

xn+1

So if one derivative is a sum of terms of the form Ax−ne−
1
x2 , then all sub-

sequent derivatives will also be of this form, which is what we claimed.

Now iff the term Ax−ne−
1
x2 is continuous, we note that that finite sums

of these terms are also continuous. Let us first show continuouity1 x = 0.

We see that as x → 0±, e−1/x2 → 0 and x−n → ±∞. So does e−1/x2

tend to 0 faster than x−n tends to ∞? The answer is yes. To see this,
consider the power-series2 obtained by expanding the exponent:

e1/x
2
= 1 +

1

x2
+

1

2! · x4
+ . . .

1

(n+ 1)! · x2n+1
+ . . . >

1

(2n+ 1)! · x2n+1

=⇒ e−
1
x2 < (2n+ 1)! · x2n+1

=⇒ lim
x→0

e−
1
x2

xn
< lim

x→0

(2n+ 1)!x2n+1

xn
= (2n+ 1)! lim

x→0
xn+1 = 0

The argument above applies regardless of whether the limit is from above or
below, and hence every derivative is continuous at x = 0. It is easy to see
that the function is continuous everywhere else, as we know in general that
if I and J are intervals, f : I → R is continuous at x ∈ I (f(x) ∈ J) and
g : J → R is continuous at f(x), then the composition g ◦ f is also continu-
ous at x. In our case, f(x) = ex and g(x) = −x−2 which are both obviously
continuous at x ̸= 0, and hence the composition of them is also continuous
on this domain. Muliplying this with x−n will again yield a continuous func-
tion (in the defined domain), as multiplying continuous functions preserves
continuouity. And so we have that k(x) = Ax−ne−

1
x2 is continous for all R,

and hence all the derivatives of f(x) = e−
1
x2 are continuous, and hence our

function is C∞ smooth.

Now we need to show that f(x) = e−
1
x2 is not analytic at x = 0. This

1We say a function f(x) is continuous at x = 0 iff limx→0 f(x) is the same whether the
limit goes from above or below.

2We could also use L’Hospitals Rule here.
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is easy, as suppose f(x) can be expressed by a power series about x = 0.
Then

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x+ . . .

But we have just shown that each derivative vanishes at x = 0. So the
power-series also vanishes, and tells us that f(z) = 0, which is nonsense. As
there is no power-series representation about z = 0, it is not analytic there.

6.5 ⋆
We were given previously that ex =

∑∞
n=0

xn

n! = 1 +
∑∞

n=1
xn

n! . Then

dex = d(1) + d
∞∑
n=1

xn

n!
= 0 +

∞∑
n=1

nxn−1dx
n!

=
∞∑
n=1

xn−1

(n− 1)!
dx =

∞∑
n=0

xn

n!
dx = exdx

where we made use of n
n! =

n
n·(n−1)·...·1 = 1

(n−1)! .

6.6 ⋆⋆
We will prove this using induction. We first need the obvious fact that
dx
dx = 1. The formula d(xn) = nxn−1dx then obviously holds for n = 1. Now
suppose it holds for some n = k. Then

d(xk+1)

dx =
d(x · xk)

dx =
dx
dx · xk + x

d(xk)
dx

= 1 · xk + x · kxk−1

= (k + 1)xk

So iff it holds for n = k, it also holds for n = k + 1. But it holds for n = 1,
and so also for n = 2, and then also for n = 3, etc.

6.7 ⋆
We abbreviate f(x) ≡ f etc. Now let y = [g]−1. Then

dy =
dy
dg · dg = −g−2 · dg

Then using the Leibniz rule on fy, we get

d(fy) = y · df + f · dy =
df
g

− f · dg
g2

g · df − f · dg
g2
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6.8 ⋆
Let y(u(x)) = u4, where u = 1− x2. Then

dy
dx =

dy
du · du

dx = 4u3 · (−2x) = −8x(1− x2)3

Let us look at the other function. Using the ‘quotient’ rule, we quickly get
d

dx [(x+ 1)(1− x)−1] =
(1− x) · 1− (x+ 1) · (−1)

(1− x)2
=

2

(1− x)2

6.9 ⋆⋆
We will assume all of the results obtained in question [6.10].

Lets do y = xx first. log y = x log x =⇒ y−1dy = (log x+ 1)dx. From this
we get

d(xx) = xx(log x+ 1)dx
For the second one, let us first work out d log x. Let y = ex =⇒ log y = x.
Then using the ‘chain-rule’,

d(log y) = y′ · (log y)′dx = ex · (log y)′dx = d(x) = dx

=⇒ (log y)′ =
1

ex
=

1

y

And now it is obvious to see that

d(loga x) =
dx

x log a

as
loga x =

log x

log a

For the last one, let y = xlogx a = a. Then log y = logx a · log x = log a =⇒
d(log y) = x−1 logx adx+ log x · d(logx a) = 0. From this we get

d(logx a) = − logx a

x · log x
dx = − log a

x · (log x)2
dx

6.10 ⋆⋆
1. We know that elog x = x. Then d(elog x) = d(x) =⇒ elog x · d(log x) =

1 =⇒ x · d(log x) = 1 from which the result follows.

2. We know that eix = cosx + i sinx. Then deix = d(cosx) + id(sinx).
But also deix = ieixdx = (i cosx − sinx)dx. Now we know that
d(cosx) and d(sinx) are real (slopes of real functions are obviously
real numbers) and so d(cosx) corresponds to the real part of deix,
and d(sinx) the imaginary part. Hence d(cosx) = − sinxdx and
d(sinx) = cosxdx.
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Figure 1:

3. sin(sin−1 x) = x =⇒ cos(sin−1 x) · d(sin−1 x) = dx =⇒ d(sin−1 x) =
dx

cos(sin−1 x)
. Now using Fig 1, we see that sin−1 x = θ. Also, cos θ = y.

We also have that x2+y2 = 1 =⇒ y =
√
1− x2. Hence cos(sin−1 x) =

y =
√
1− x2. Putting this together, we have that

d(sin−1 x) =
dx√
1− x2

The remaining expressions are obtained in exactly the same way, and we
won’t do them here.
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7. Complex-number calculus
7.1 ⋆
This basically stems from the fact that integrating zn will give 1

n+1z
n+1,

when n ̸= −1. But the function f(z) = zn+1 is not multivalued, thus the
integral must vanish.

To see this explicitly, suppose z′ is z rotated by 2π, i.e z′ = z · e2iπ. Then
(z′)(n+1) = zn+1 · e2iπ(n+1) = zn+1. Hence∫ z′

z
zn dz =

∮
zn dz =

1

n+ 1
(z′)n+1 − 1

n+ 1
zn+1 = 0

7.2 ⋆
It is easy to see once we note that

∮
zn dz = 0 for all n ̸= −1, which we

showed in Question 7.1.

The Maclaurin expansion of f(z) is f(z) =
∑∞

k=0
f (k)(0)

k! zk. Thus

n!

2πi

∮
f(z)

zn+1
dz =

n!

2πi

∮ ∑∞
k=0

f (k)(0)
k! zk

zn+1
dz

=
n!

2πi

∞∑
k=0

f (k)(0)

k!

∮
zk−n−1 dz

= 0 + 0 + . . .+
f (n)(0)

2πi

∮
z−1 dz + 0 + 0 + . . .

=
f (n)(0)

2πi
· 2πi

= f (n)(0)

7.4 ⋆⋆
We will consider the case with 3 poles. First, we note that we can always
deform the contour so that we can have closed contours around each of the
poles. Each circle contains only one pole. Hence the total integral will be
the sum of each of the closed circle integrals.

Now we need to evaluate the circular integrals. So let us consider the circle
around the pole a1. We have that h(z) is analytic within the contour, hence
we can express it as a Taylor series about a1, i.e h(z) =

∑∞
k=0

h(k)(a1)
k! (z−a1)k

10



Thus

f(z) =
1

(z − a1)n

∞∑
k=0

h(k)(a1)

k!
(z − a1)

k =
∞∑
k=0

h(k)(a1)

k!
(z − a1)

k−n

Now we have from question [7.1] that
∮
zn dz = 0 for all n ̸= −1. It is easy

to see that the same must be true for (z + p)n. So the closed-integral of
(z − a1)

k−n is only non-zero for k − n = −1 =⇒ k = n− 1. Thus∮
γ1

f(z) dz =

∮
γ1

∞∑
k=0

h(k)(a1)

k!
(z − a1)

k−n dz

=

∞∑
k=0

h(k)(a1)

k!

∮
γ1

(z − a1)
k−n dz

=
h(n−1)(a1)

(n− 1)!

∮
γ1

(z − a1)
−1 dz

= Res[f(z), a1] · 2πi

as we are given that h(n−1)(a1)
(n−1)! = Res[f(z), a1]. Thus the total integral is

(the sum of the residues at the poles)×2πi.

7.5 ⋆⋆⋆
Question: Show that ∫ ∞

0
x−1 sinx =

π

2

Strategy: Penrose recommends we consider the function f(z) = z−1eiz in-
stead of the obvious z−1 sin z.3 We integrate along the contour in Fig. 1.
We can easily find the value of the total integral using the Cauchy formula,∮
f(z)z−1 dz = 2πi · f(0) (Road TR pg 127). We can then calculate the

contribution from Γ2 as ϵ → 0, and we will show that as R → ∞, Γ1 → 0.
Then the contribution from the real axis plus Γ2 equals what we got using
the Caucy formula. Thus we can get the value of the integral along the real
axis. Finally, we know that the original integral is just the imaginary part
of the integral of z−1eiz.

Solution: Making use of the Cauchy formula, and that in general z = x+iy

3The reason for this is that the integral of z−1 sin z around the semicircle Γ1 does not
go to 0 as R → ∞. It is much easier showing things go to zero than explicity evaluating
them, and so we avoid this difficulty by integrating around z−1eiz instead.
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Figure 2: The contour along which we integrate f(z) = z−1eiz, with the star
indicating the singularity at the origin.

so z = x on the real-axis,∮
Γ
z−1eiz dz = 2πiei·0 = 2πi

=

∫
Γ1

z−1eiz dz +

∫
Γ2

z−1eiz dz +

∫ −ϵ

−R
x−1eix dx+

∫ R

ϵ
x−1eix dx

It turns out that
lim
R→∞

∫
Γ1

z−1eiz dz = 0

This is difficult to show directly. It is easiest making use of a result not
given in the Road TR, known as Jordan’s lemma. The statement (and sim-
ple proof) of the Lemma is given in the Appendix, from which it is easy to
see that this result follows.4

Now we want to find the value of the integral along Γ2 as ϵ → 0. We
give two different ways of getting this.

4This may seem as cheating, but the method of the proof could be used to directly get
the result. Why not just get the general result instead?
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Evaluating Γ2, method 1

lim
ϵ→0

∫
Γ2

z−1eiz dz = lim
ϵ→0

∫
Γ2

z−1

[
1 +

1

1!
(iz) +

1

2!
(iz)2 + . . .

]
dz

= lim
ϵ→0

∫
Γ2

z−1 dz + lim
ϵ→0

i

∫
Γ2

dz − lim
ϵ→0

1

2

∫
Γ2

z dz + . . .

But limϵ→0

∫
Γ2
zn dz = 0 for all n ≥ 0.5 Hence

lim
ϵ→0

∫
Γ2

z−1eiz dz = lim
ϵ→0

∫
Γ2

z−1 dz

Now we know that z = ϵeiϕ. Hence

dz = iϵeiϕdϕ

Thus

lim
ϵ→0

∫
Γ2

z−1 dz = lim
ϵ→0

∫ 0

−π

1

ϵeiϕ
iϵeiϕdϕ

= i lim
ϵ→0

∫ 0

−π
dϕ = iπ

Evaluating Γ2, method 2
The result can be obtained using only Cauchy’s formula, and symmetry. We
do this here. So using Eulers formula, we have that∫

Γ2

z−1eiz dz =

∫
Γ2

z−1 cos z dz + i

∫
Γ2

z−1 sin z dz

Now suppose we chose to integrate around a complete circle centred on
z = 0. In this case, we can use Cauchy’s formula:∮

z−1 cos z dz + i

∮
z−1 sin z dz = 2πi cos(0) + 2πi · i sin(0)

= 2πi+ 0

The circle consists of two semicircles, Γ2 and, let us call the other ϕ. Now
Γ2 is evaluated from z = −ϵ to z = ϵ, then let ϕ be evaluated from z = ϵ to
z = −ϵ. Now as f(z) = z−1 sin z is a symmetric, i.e f(−z) = f(z), we have
that ∫

Γ2

z−1 sin z dz =

∫
ϕ
z−1 sin z dz

5The maximum value of zn on Γ2 goes to 0 as ϵ → 0, and the length of Γ2 also goes to
zero. Hence the integral must also go to zero.

13



Hence∮
z−1 sin z dz =

∫
Γ2

z−1 sin z dz +

∫
ϕ
z−1 sin z dz = 2

∫
Γ2

z−1 sin z dz = 0

Next, we note that z−1 cos z is antisymmetric, and hence∫
Γ2

z−1 cos z dz = −
∫
ϕ
z−1 cos z dz

Hence
∫
Γ2
z−1 cos z dz = πi and so

∫
Γ2
z−1eiz dz = πi.

Putting the contributions to all the paths together, and noting that∫ −ϵ

−R
x−1eix dx =

∫ R

ϵ
x−1eix dx,

we get that∮
Γ
z−1eiz dz = 2iπ

= 0 + iπ + 2 lim
1
R
,ϵ→0

∫ R

ϵ
x−1eix dx

= iπ + 2

∫ ∞

0
x−1eix dx

=⇒
∫ ∞

0
x−1eix dx = i

π

2

=⇒
∫ ∞

0
x−1 cosx dx+ i

∫ ∞

0
x−1 sinx dx = i

π

2

This implies that
∫∞
0 x−1 cosx dx = 0, as it is real and the real part of iπ2

is 0. Hence ∫ ∞

0
x−1 sinx dx =

π

2

7.6 ⋆⋆⋆
Let

f(z) = z−2 cot zπ = z−2 cos zπ(sin zπ)−1

We integrate about the square contour Γ as shown in Fig. 2. We know from
question [7.4] that this integral will equal the sum of the residues within the
contour. Hence

1

2πi

∮
Γ
f(z) = Res[f(z), 0] +

−1∑
n=−N

Res[f(z), n] +
N∑
n=1

Res[f(z), n] (2)

14



Let us investigate the residues. The function f(z) has a pole at z = 0
and whenever sinπz = 0, which will be when z = n, n ∈ Z. Penrose rec-
ommends that we use the results of [7.4]. In order to use the formula for
the residue, we need to know what order pole we dealing with. At z = 0,
(sinπz)−1 has a pole of order 1 also. One can easily see this from the series
(sinπz)−1 = (πz − (πz)3

3! + . . .)−1 = (πz)−1(1− (πz)2

3! + . . .)−1 = (πz)−1g(z),
where g(z) is obviously regular at z = 0. As cosπz = 1 + . . ., we have that
the pole of f(z) at z = 3 is of order 3. The other poles at z = n, n ̸= 0 are
obviously of order 1.6

Lets find the residue at z = 0. To do this, first note that we can write
f(z) = z−3h(z) where h(z) = z cotπz, and is regular around z = 0. Also,7
d
dz cotπz =

π
sin2(πz)

= π csc2(πz) Then from [7.4], we have that

Res[f(z), 0] = lim
z→0

[
1

2!

d2h(z)

dz2

]
= lim

z→0

[
2π2z cos(πz) csc3(πz)− 2π csc2(πz)

]
= lim

z→0

[
π2z cos(πz)− π sin(πz)

]
csc3(πz)

= lim
z→0

π ·
[
πz(1− (πz)2

2!
+ . . .)− (πz − (πz)3

3!
+ . . .)

]
1

(πz)3
· 1

(1 + . . .)3

= lim
z→0

π ·
[
−(πz)3

3
+ . . .

]
1

(πz)3
· 1

(1 + . . .)3

= −π
3

Now we find the residue at z = n, n ̸= 0. As the pole is of order 1, we can
write f(z) = (z−n)−1k(z) where k(z) = z−2(z−n) cotπz is regular around
z = n. Then

Res[f(z), n] = lim
z→n

k(z)

0!
= n−2 lim

x→0
x · cotπ(x+ n)

= n−2 lim
x→0

x · cotπx

= n−2 lim
x→0

x

sinπx

=
1

πn2

where we used x = z − n, and the last limit was evaluated using the
same argument as used previously for z = 0. We also used the fact that
cot(x+ πn) = cotx.

6This is not obvious from the series, but due to the periodicity of sin z, if the pole
at z = 0 is order 1, then the others must be too. This is because sin(πn) = ± sin(0)
(depending on n even or odd), so has order 1.

7This is easy to find using the Quotient rule on pg. 115 RTR, and won’t bother showing
it here.
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Putting all this into (2), we get

1

2i

∮
Γ
f(z) dz = −π

2

3
+

−1∑
n=−N

1

n2
+

N∑
n=1

1

n2
(3)

We can simplify the above by noting that
∑−1

n=−N n
−2 =

∑N
n=1 n

−2.

We now show that the total integral vanishes when N → ∞.8 We will
make use of the fact that∣∣∣∣∮

Γ
f(z) dz

∣∣∣∣ ≤ L · max(|f(Γ)|)

where L is the length of the contour Γ.9 If L · max(|f(Γ)|) → 0 as N → ∞,
then the integral must vanish. Now the length of the square-contour is
simple L = 4 · (2N + 1) = 8N + 4.
We have |f(z)| = |z−2 cotπz| = |z−2| · | cotπz|. Obviously |z| > N , and so
|z−2| < N−2. Let us look at the cotπz term.

| cotπz| =
∣∣∣∣eiπz + e−iπz

eiπz − e−iπz

∣∣∣∣ = ∣∣∣∣1 + e−2iπz

1− e−2iπz

∣∣∣∣
For the vertical sides of the square, z = ±(N + 0.5) + iy. For this side, and
making use of e±2iπ(N+0.5) = −1,

| cotπz| =

∣∣∣∣∣1 + e−2iπ(±N±0.5+iy)

1− e−2iπ(N+0.5+iy)

∣∣∣∣∣ =
∣∣∣∣1− e2πy

1 + e2πy

∣∣∣∣
=

∣∣∣∣1− 2

1 + e2πy

∣∣∣∣ ≤ 1

For the horizontal sides, z = x+iy with y = ±N+0.5. Using10 max(|z|, |a|)−
min(|z|, |a|) = ||z| − |a|| ≤ |z + a| ≤ |z|+ |a| and that |e−2iπz| = e2πy,

| cotπz| = |1|+ |e−2iπz|
||1| − |e−2iπz||

=
1 + e2πy

|1− e2πy|

≤
∣∣∣∣1 + 2

e2πy − 1

∣∣∣∣
8We are working towards an answer (that 1 + 1

22
+ 1

32
+ . . . = π2

6
), and we can easily

see from the above equation that for this answer to be correct, the integral must vanish!
Not that for some editions of the book, there is a typo, with Penrose telling us the sum
equals π

6
instead of π2

6
.

9This is not given by Penrose, but is pretty obvious.
10These inequalities follow very simply from the geometry of complex numbers.
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For large y, this above tends to 1, and diverges only for y = 0. Hence we can
find some k ∈ R, such that for any N , | cotπz| ≤

∣∣1 + 2(e2πy − 1)−1
∣∣ ≤ k

lim
N→∞

∣∣∣∣∮
Γ
z−2 cotπz dz

∣∣∣∣ ≤ lim
N→∞

(8N + 4) · |N−2| · k = 0

Hence the integral vanishes as N → ∞. Thus, from (3) we have

0 = −π
2

3
+ 2

N∑
n=1

1

n2

=⇒
N∑
n=1

1

n2
=
π2

6

7.7 ⋆⋆
One way is by recognising 1/z to be an incipient geometric series.11 So a
little manipulation:

1

z
= − 1

−p− (z − p)
=

1/p

1− (− z
p + 1)

=

∞∑
n=0

p−1(−z
p
+ 1)n

=
∞∑
n=0

(−1)np−(n+1)(z − p)n

7.8 ⋆
For a given frequency nω, we have two contributing exponentials

α−ne
−inω + αne

inω = α−n[cos(−nω) + i sin(−nω)] + αn[cos(nω) + i sin(nω)]

= (α−n + αn) cos(nω) + i(α−n − αn) sin(nω)

= an cos(nω) + bn sin(nω)

where we made use of cos(−x) = cosx and sin(−x) = − sinx.

11This is not in Road TR, though common maths knowledge. A geometric series is of
the form a+ ax+ ax2 + . . . = a

1−x
, where |x| < 1
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8. Riemann surfaces and complex mappings
8.1 ⋆
We can always write z = reiθ+2πik, where k is some integer. Then f(z) =
za = raeiθa+2πika. For 0 turns, k = 0 and za = raeiθa. The Riemann sheets
will join together when 2πika = 2πip, where p is some integer.12 This im-
plies that ka = p =⇒ a = p/k. Now suppose a is irrational. By definition,
there are no integers p and k such that a = p/k. Hence the spiralling sheets
will not join again for any number of turns.

If a is rational, i.e. of form, a = m/n (remembering that m and n have
no common factors) then m/n = p/k =⇒ p = mk/n. This equation is first
satisfied when k = n, and so the sheets meet up after n turns.

8.4 ⋆⋆(⋆)

This problem is a great deal harder than what Penrose has rated it. It
is likely that he made a mistake with the phrasing of the question, and
instead meant one had to show that the mapping preserves origin-centred
circles, which is much easier.13 Indeed, such a circle is given C = Reiθ where
0 ≤ θ < 2π. Then if f(z) = z−1, then f(C) = R−1e−iθ which is evidently
another origin-centred circle of radius R̃ = R−1 and of opposite orientation.

However, we also want to show the general case. We give here two proofs.
The first is the most elegant, but the second is perhaps more direct, and is
nice and geometrical.

Proof 1: Apollonius

We use an ancient theorem, due to Apollonius, which gives a useful repre-
sentation of an arbitrary circle. It states:

Let t be some positive real number. Let a, b be arbitrary complex numbers
such that a ̸= b. Then the locus of points satisfying

|z − a| = t|z − b|

is a circle with radius R and centre C, where

R =
t|a− b|
|t2 − 1|

C =
t2b− a

t2 − 1

12The sheets meet up when f(z) after 0 turns is equal to f(z) after k turns.
13I have checked the official correction page for Road to Reality, and there is no correc-

tion listed. Perhaps there is an easier way than I know of!
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Now for a circle centred at C ̸= 0 of radius R, we obviously have that
|z − C| = R. Now if we apply the transformation f(z) = z−1, we have that
every point z → z−1, so

|z − C| = R→ |z−1 − C| = R =⇒ |z|
|C|

∣∣z−1 − C
∣∣ = R · |z|

|C|

=⇒
∣∣∣∣z − 1

C

∣∣∣∣ = R|z|
|C|

But this is exactly the form of the theorem of Apollonius, and so the inver-
sion of the circle is another circle. Now the observant reader will notice two
special cases, when C = 0 and when |C| = R. The case C = 0 is trivial to
show the preservation of the circle. Now when |C| = R, we have that t = 1
in the theorem, and then the radius of the resulting circle is infinite, and
the origin of the circle is at infinity. As Penrose mentions somewhere, such
a circle is just an infinitely long straight line.

Proof 2: Geometry

We can parametrize an arbitrary circle centred at k ∈ C, as C = Reiθ + k
with 0 ≤ θ < 2π. One strategy to show this is to do as we did for the
origin-centred case, and show that

1

Reiθ + k
= R̃eiθ̃ + k̃

where R̃ ∈ R, k̃ ∈ C, and obviously both have no θ̃ dependance. This
can be tried, but quickly one suffocates in the algebra!14

Lets try a different tactic. We first note that the function f(z) = z−1 =
R−1e−iθ can obviously be decomposed into first reflecting all the points
about the real-axis, and then inverting the radius. The reflection obviously
preserves circles. So lets show that the inversion also does.

Consider Fig 2. The big circle is inverted, and we have that [a] = [A]−1,
[b] = [B]−1 etc. Here [a] denotes the magnitude of [a], or distance of a from
the origin. The strategy will be to show that the angle ∠câd = 90◦. As
A is an arbitrary point on the big circle, a will be an arbitrary point on
the shape resulting from the inversion of the big circle. But iff for fixed d,c
every a produces ∠câd = 90◦, then we know from circle geometry that a
lies on a circle of diameter [cd] = |[c] − [d]|.15 To show this, we will show

14There may an elegant way to do this algebra, but I haven’t found it, and not for want
of trying!

15The reason for the absoloute magnitude is that we want to keep things general. If the
origin was contained within the original circle, then [c]− [d] will be negative.
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Figure 3: The geometry of the inversion of a circle.

that the Pythogarean theorem holds [ac]2 + [ad]2 = [cd]2 for any a. But the
Pythogarean Theorem only holds iff and only iff ∠câd = 90◦.16

To begin with, suppose we form a triangle between two arbitrary points a, d
and the origin O. We then have that [a][A] = 1 = [d][D] from [A] = a−1 and
[D] = d−1. Then [a] = ([d][A]−1)[D] = k[D] and [d] = ([a][D]−1)[A] = k[A]
as k = [d][A]−1 = [a][D]−1. So the triangles aOd and DOA are similar, as
the angle ∠aÔd = ∠DÔa and the two sides are equal up to a common scale
factor. Hence the third side of the two triangles is also related by this scale
factor.

[ad] = k[AD] =
[d]

[A]
[AD] =

[AD]

[A][D]

Note that we proved this for arbitrary points, not just the a and d shown
in Fig 2. Another simple result we will need (from Fig 2) is that [AC]2 +
[AD]2 = (D − C)2 = 4R2 as ∠CÂD = 90◦.

16The implication ∠câd = 90◦ =⇒ [ac]2 + [ad]2 = [cd]2 is was stated in the beggining
of Chapter 2. It is easy to see that the converse ∠câd = 90◦ =⇒ [ac]2 + [ad]2 = [cd]2

must also be true. For suppose ∠câd = 90◦, then [ac]2 + [ad]2 = [cd]2. But suppose I fix
the side-lengths [ac] and [ad]. Now increasing/decreasing the angle ∠câd will necessarily
increase/decrease the hypotenuse [cd]. And so any increase/decrease in the angle will
break the relation [ac]2+[ad]2 = [cd]2. So iff the relation holds, the angle must be exactly
90◦.
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We can now state our condition which we wish to show

[ad]2 + [ac]2 = (c− d)2

=⇒ [AD]2

[A]2[D]2
+

[AC]2

[A]2[C]2
=

(
1

[D]
− 1

[C]

)2

=⇒ [C]2[AD]2 + [D]2[AC]2 = [A]2
(
[D]2 + [C]2 − 2[C][D]

)
= 4[A]2R2

Now we need to show that both sides are equal. We can now use coordinates
and just churn out the result.17 It can easily be seen that the following are
true:

[AD] = 2R sin(
1

2
θ)

[AC] = 2R cos(
1

2
θ)

[A]2 = R2 sin2 θ + (k +R cos θ)2 = R2 + k2 + 2kR cos θ

[C] = k −R

[D] = k +R

The right-hand side (RHS) becomes

[C]2[AD]2 + [D]2[AC]2 = (k −R)2[2R sin(
1

2
θ)]2 + (k +R)2[2R cos(

1

2
θ)]2

= 4k2R2 + 4R4 + 8kR3(cos2(
1

2
θ)− sin2(

1

2
θ))

= 4R2(k2 +R2 + 2kR cos θ)

where in the last line we made use of the identity cos(2θ) = cos2 θ − sin2 θ.
Now the left-hand side:

4[A]2R2 = 4 · (R2 + k2 + 2kR cos θ) ·R2

= 4R2(R2 + k2 + 2kR cos θ)

which is the same as the RHS. Hence the Pythogorean identity holds, and
∠câd = 90◦, and hence the image of the inversion of a circle is another
circle. We note also that the argument used was completely general. It did
not depend on where the original circle actually was.18

17Some may be worried that I am only dealing with a very particular circumstance,
with the original circle centred on the x-axis. But the inversion does not depend on any
angle, it has rotational symmetry. So we can always rotate our coordinates so that this is
the case.

18The method used was inspired by the one used by Needham [?], but with major
modifications. He used a beautifully simple argument using the similar triangle property,
but one had to consider seperately the case where the origin is contained in the original
circle, and a few other considerations were needed to take care of the case where the
original circle overlaps the unit circle.
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9. Fourier Decomposition and hyperfunctions
9.1 ⋆
For a given frequency nω, we have two contributing exponentials

α−ne
−inω + αne

inω = α−n[cos(−nω) + i sin(−nω)] + αn[cos(nω) + i sin(nω)]

= (α−n + αn) cos(nω) + i(α−n − αn) sin(nω)

= an cos(nω) + bn sin(nω)

where we made use of cos(−x) = cosx and sin(−x) = − sinx.

9.2 ⋆⋆
We learnt on pg.126 that only the z−1 term contributes to the integral 19

and hence, taking a contour20 about z = 0, we get∮
z−n−1F (z)dz =

∮
1

zn+1

(
. . .+ αn−1z

n−1 + αnz
n + αn+1z

n+1 + . . .
)

dz

= . . .+ αn−1

∮
z−2 dz + αn

∮
z−1 dz + αn+1

∮
dz + . . .

= . . . 0 + 2πi · αn + 0 + . . .

= 2πiαn

The result follows from this.

19ie.
∮
z−1 dz = 2πi and that

∮
zn dz = 0 for all n ̸= −1.

20obviously the contour will be contained within the unit circle, as this is the region of
analyticity of F (z).
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10. Surfaces
10.1 ⋆⋆
Suppose w, z are complex numbers. We can construct subtraction as

w − z = w + (−z) = w + (−1 · z)

using only addition and multiplication. Division is slightly more tricky. Let
us divide an arbitrary complex number z by w,

z

w
=

z

1− (1− w)

=

∞∑
n=0

z · (1− w)n = lim
i→∞

i∑
n=0

z · (1− w)n

where we made use of the geometric summation

1

1− b
=

∞∑
n=0

bn

10.2 ⋆
We have that z = x+ iy. For the first function,

F (z, z) = z2 + z2

= (x+ iy)2 + (x− iy)2

= 2x2 − 2y2

= f(x, y)

For the second function,

F (z, z) = zz

= (x+ iy)(x− iy)

= x2 + y2

= f(x, y)

10.3 ⋆⋆⋆
Suppose y = a, where a some constant. Then

f(x) =
ax

(x2 + a2)N

Now to show that f(x) is Cω-smooth, we need to show that we can repre-
sent it as a power-series. There are a variety of ways of doing this. One
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elegant method goes as follows: We consider the above function to be a
complex-valued function of the complex variable x. Then we show it to be
complex-smooth, which Penrose showed in Section 7.3 to imply complex-
analyticity. If we know a function to be complex analytic, we know it can
be represented by a complex power series. But this series must also hold on
the real-line. And so the function is also real-analytic.

The key to showing complex-smoothness lies in the fact that the compo-
sition of complex smooth functions is also complex smooth. This fact is
obvious from the discussion Section 8.2, showing that complex smoothness
is equivalent to conformality (and non-reflectingess). If two functions pre-
serve infinitesimal angles, then their composition must obviously also do so,
and so the composition is conformal and hence complex smooth. Now we
need the simple fact that f(z) = zn for any n ∈ R is complex smooth,21 and
so are transformations of the type f(z) = az + b are also smooth. We can
see that we can compose our function of these (for any value of N , not just
for N = 2, 1, 1/2), and so we conclude that f(x) = ax(x2 + a2)−N is a real
Cω-smooth function, as we needed to show.

Having showed the function in a single variable to be pretty smooth, we
now need to show that this is no longer the case when we consider the func-
tion as a function of the pair (x, y). We consider each of the three cases
seperately. Any line through the origin can be expressed y = mx. Then for
the case N = 2, considering the function on lines through the origin

f(x) =
mx2

x4(m2 + 1)2
=

m

(m2 + 1)2
1

x2

which diverges when x→ 0 and m ̸= 0.

For N = 1,

f(x) =
mx2

x2(m2 + 1)
=

m

m2 + 1

which is clearly discontinuous at x = 0, as f(0, 0) is dependant on the slope
of the line, and so different depending on the direction taken to get to (0, 0).
It is also clearly bounded at (0, 0).

For N = 1/2, let us consider the line y = x. Then

f(x) =
x2√
2x2

=
x2√
2 |x|

=
|x|√
2

where we made use of
√
x2 = |x|. We already know that |x| is not smooth

at the origin, although it certainly is continuous.
21except at z = 0 for n < 0 ofcourse.
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10.4 ⋆⋆
Polynomials are composed of sums of terms of the form xnym where n,m ∈
N. It suffices to show that the order differentiation on one of these terms
does not matter, in order to show that it also doesn’t matter for a general
polynomial22

∂2

∂x∂y
xnym =

∂

∂x
mxnym−1 = nmxn−1ym−1 =

∂

∂x
mxnym−1 =

∂2

∂y∂x
xnym

10.6 ⋆
Following Penrose’s hint, we see that x2+xy+y2 = (x−y)2+3xy = X2+3Y .
We then have

f(x, y) = x3 − y3 = (x2 + xy + y2)(x− y) = (X2 + 3Y )X = F (X,Y )

10.12 ⋆⋆⋆
Suppose z = x+ iy and f(z) = α+ iβ, where α, β real functions of z. Then
using the same definition for the derivative as in the real case,23 we have

df

dz
= lim

δz→0

f(z + δz)− f(z)

δz
= lim

δz→0

δf(z)

δz
= lim

δz→0

δα+ iδβ

δx+ iδy

Now for the above limit to exist, it cannot depend on the direction taken to
get to 0. Hence we should have that the limit should be the same whether
we fix δy = 0 and let δx → 0, or whether we fix δx = 0 and let δy → 0.
Hence

lim
δx→0

δα+ iδβ

δx
= lim

δy→0

δα+ iδβ

iδy

=⇒ ∂α

∂x
+ i

∂β

∂y
=
∂α

i∂y
+ i

∂β

i∂y

Equating the real and imaginary parts of the above gives the two Cauchy-
Riemann equations.

22This should be obvious, as one of the properties of derivatives is that d
dx

(f(x)+g(x)) =
df(x)
dx

+ dg(x)
dx

.
23I am not sure whether Penrose actually defines this anywhere.

25



11. Hypercomplex Numbers
11.1 ⋆⋆
For the first,

ijk = −1 =⇒ i(ijk) = −i =⇒ (ii)jk = −i =⇒ −j(jk) = −ji

=⇒ k = −ji

But also ijk = −1 =⇒ (ijk)k = −k =⇒ ij = k. Hence ij = k = −ji, as
we wanted. The other two are done using the same technique.
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12. Manifolds of n dimensions
12.1 ⋆
One definition of the dimension of a space, is the minimum number of seper-
ate numbers required to uniquely fix the position of a point in that space.

Method 1
Take a book. One requires three numbers to specify where in 3-d space the
centre of mass is. Now how many rotational degrees of freedom are there?
Twist it around to see! There are three axes of rotation, one through the
front cover, one through the spine and one through the top (if you are stand-
ing the book up).

Now flip the book by 90 degrees about the front cover. Note the posi-
tion of the book. Put it back to where it was, and try to get the book to the
front-cover flip position by only turning it about the spine and top. You will
see this can’t be done! This shows that two rotation axes are not enough to
define where the book is. And so specifying how much the book is rotated
through each of these axes is another 3 numbers. And so it requires a min-
imum of 6 numbers to completely specify the position of the book, and so
the dimension of the space of all the possible positions is 6.

Method 2
A more elegant method. We first assume something obvious: if you tell
me where 3 points are on a rigid body, I know exactly where the rest of
the points are.24 Two are obviously not enough. Now naively, we think it
requires 9 coordinates to specify these 3 points in 3-d space. But we can do
better.

Let us our three points be pcm, p2, p3. Fixing pcm requires 3 coordinates.
Once this is fixed, p2 can only be a fixed distance from pcm, and so be on
the surface of a sphere centred about pcm. The sphere is 2-d. Once p2 is
fixed, p3 can only be somewhere a fixed distance from both pcm and p2. The
set of points satisfying this condition is a circle, which is 1-d. And so the
total dimension is 3+2+1=6.

24If this gives problems, think of the points as fixed hinges connected to the object.
If there is one hinge, the rigid body can swivel in any direction about it. With another
hinge, you can still rotate the object about an axis through both hinges. Add another
one, and you can’t move the body. It is stuck.
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13. Symmetry groups
13.1 ⋆⋆⋆
We are given that

♣ 1 · a = a

⋆ a−1a = 1

■ a(bc) = (ab)c

where a, b, c ∈ G, where G is some set. First we want to show that a · 1 = a.
So

a−1(a · 1) = (a−1a) · 1 = 1 · 1 = 1

Now we prove that inverses are unique. Suppose there exists b ̸= a, such
that a−1b = 1. Then letting d = a−1, we have that

a−1b = db = 1

=⇒ (d−1d)b = d−1 · 1
=⇒ 1 · b = d−1 · 1
=⇒ bd = d−1 · 1 · d
=⇒ bd = 1

=⇒ ba−1a = 1 · a
=⇒ b = a

Contradiction! Hence our assumption that b ̸= a is false, and so b = a. In
our case, we have that b = a · 1 = a, as we wanted to show.

We now want to show that aa−1 = 1.

(aa−1)a = a(a−1)a) = a · 1 = a

If we can show that the identity is unique, then we will have our result. So
suppose there is c ̸= 1 and that ca = a for all a ∈ G. Hence

ca−1 = a−1

=⇒ c(a−1a) = a−1a

=⇒ c · 1 = 1

=⇒ c = 1
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The first line holds as a−1 ∈ G and hence ca−1 = a−1 by assumption. Thus
we have a contradiction, and our assumption that c ̸= 1 is false, and hence
c = 1. In our case, we have that c = aa−1 = 1, as we wanted.

The next part we will approach by providing a set whose elements obey
⋆, ■ and a1 = a, but not 1a = a and aa−1 = 1.
So let us have a set G = {1, a}. It has the multiplication rules a1 = a,
1a = 1, 11 = 1 and aa = a. This set certainly obeys a1 = a, and also ⋆
with a−1 = 1 and 1−1 = 1. Then to check ■, there are 8 combinations to
check. These are easy to do. Here are two:

a(a1) = aa = a = (aa)1

1(1a) = 11 = 1 = (11)a

Checking the rest, we see that ■ is satisfied. But 1a = 1 ̸= a and aa−1 =
a1 = a ̸= 1. Hence a1 = a, ■ and ⋆ cannot imply ♣ and aa−1 = 1.

13.4 ⋆⋆
We are asked to show that the multiplication table of the group {1,−1, i,−i,C,Ci,−C,−Ci}
can deduced from three identities

i4 = 1, C2 = 1 Ci = i3C (4)

Now there is some confusion as to what Penrose wanted us to assume. If all
we know about the group are the above three properties, we can’t deduce
all the rules (For example, how does one deduce that 1.1=1 for example, or
that i2 = −1?). It seems we are expected to interpret the group elements
1,−1, i,−i as normal complex numbers, for which we know the multiplica-
tion rules. (But then we know what i4 is, and so Penrose could have given
only two rules to work out the multiplication table...)

With this in mind, we see that we can deduce the group multiplication
laws from the multiplication laws shown in Question [13.3] Now we show
that these follow from (4). The first:

Ci = i3C =⇒ iCi = (i4)C =⇒ (i2)Ci = iC =⇒ −Ci = iC =⇒ Ci = (−i)C

The second:

Ci = (−i)C =⇒ i = C(−i)C =⇒ i2 = C(−i)Ci =⇒ C(−1) = C(−i) =⇒ Ci = (−i)i3C

13.6 ⋆⋆
We enumerate the various possible subgroups ofG = {1,−1, i,−i,C,Ci,−C,−Ci},
and see which of these are non-normal.
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• 1 must be in any subgroup

• 1,-1 is subgroup, but normal as 1,-1 commute with all elements of G.

• The smallest subgroup containing i or −i is {1, i,−i,−1}. This sub-
group is normal. This follows from

C{1, i,−i,−1} = {C,Ci,C(−i),C(−1)} = {C, (−i)C, iC, (−1)C} = {1, i,−i,−1}C

This shows that any rotation followed by a reflection can also me
made of a reflection first and then a rotation. We don’t have to check
the other reflections, as they are simply rotations composed with a
reflection.

• Reflecting twice about the same axes always give us back the iden-
tity, so each reflection with the identity is a subgroup. These are
{1,C},{1,Ci}, {1,−C} and {1,−Ci}. These are each non-normal,
which can be seen by post- and pre-multiplying the group by i, as
Penrose did.

• Expanding these groups by adding i or −i gives us the trivial normal
group.

• Expanding by adding -1 gives us two groups of order 4, {1,−1,C,−C}
and {1,−1,Ci,−Ci}. But these subgroups are normal. Multiplying
any of the elements by i would lead to at most a difference of −1
between pre- and post-multiplying. Also, (Ci)C = (i3C)C = −i and
C(Ci) = i. Again differing only by −1, and hence the two subgroups
are normal.

The above are the only possible subgroups, and hence there are only 4 non-
normal subgroups.

13.7 ⋆⋆⋆
We are asked to show that SO(3) is the only non-trivial normal subgroup of
O(3). First we show that SO(3) is a normal subgroup. Here are some facts
we will need, all follow from something stated or proven in Chapter 13.

• Let O be a 3× 3 matrix. Then O ∈ O(3) iff OOT = I.

• Let A be a 3×3 matrix. Then A ∈ SO(3) iff A ∈ O(3) and detA = 1.

• det(AB) = det(A) det(B)

• det(AT ) = det(A)

• H is a normal subgroup of G iff gH = Hg where g ∈ G ⇐⇒
H = gHg−1 ⇐⇒ ghg−1 ∈ H for all h ∈ H.
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Its easy to see that SO(3) is a subgroup. It is closed (if A,B ∈ SO(3),
then det(AB) = det(A) det(B) = 1 · 1 = 1, so AB ∈ SO(3)), it contains
the identity I, and inverses (if det(A) = 1, then det(AT ) = 1. And so if
A ∈ SO(3), then its inverse A−1 = AT ∈ SO(3)).

It is also easy to see that it is a normal subgroup, as iff A ∈ SO(3), and
X ∈ O(3), then det(XAX−1) = det(X) det(A) det(XT ) = [±1]2 ·1 = 1, and
so XAX−1 ∈ SO(3) which means SO(3) is normal.

Now we need to show that there are no other normal subgroups of O(3).
We will examine two cases:

1. Can we create any normal subgroups if we include reflections?

2. Are there any normal subgroups of SO(3)?

Case 1 - Including reflections

Let T be some reflection. Now the simplest group containing a least 1 reflec-
tion is G = {I,T}, where I is the identity. Its a group, as for any reflection
T2 = I. But this is certainly not a normal subgroup. Look at Figure 1. We
choose our coordinate system so that T is a reflection about the xz−plane.
The action of T on the point (−1, 0). It leaves it invariant. Let Rθ ∈ O(3)
be an anticlockwise rotation of θ about the origin. If G were a normal sub-
group, then R−θ ◦ T ◦ R−θ ∈ G, which it obviously is not from Figure 1.
The element R−θ ◦T ◦ R−θ is a reflection about the blue line.
But what if we try and enlarge G so that it is normal? To do this, we im-
mediately have to add the reflection planes intersecting the blue lines. But
θ was arbitrary, and so every reflection plane through each opposite points
on the circle will have to be added.

But this is not yet big enough, as we can use the same argument with a
reflection plane about the yz−plane and the xy−plane. We must conclude
that our group must include all reflections to stand a chance of being nor-
mal. But now we use a key fact: Any rotation is the composition of two
reflections. So for a group containing all reflections to be closed, we need to
include all the rotations. But this is just a trivial subgroup of O(3), namely
O(3) itself.

Case 2 - Only rotations

We will now show that there are no subgroups of SO(3) which can be normal
with respect to O(3). We could do this using a similar technique to Case 1,
but it is a little messy. A more elegant method is to use quaternions.
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Figure 4:

We will need some facts which Penrose doesn’t explicitly state, but could
be derived if clever enough.

• The quaternion V = cos θ2 + sin θ
2(v1i + v2j + v3k) = cos θ2 + sin θ

2V
where V is a unit vector, represents a rotation of θ about the axis V.

• Suppose we have some 3-d vector W. Then W′ = VWV−1 is W
rotated about V by an angle θ.

Now suppose there exists a non-trivial normal subgroup of SO(3). Then it
must contain some rotation represented by a quaternion of the form W =
cos ϕ2 + sin ϕ

2 (w1i + w2j + w3k) = cos ϕ2 + sin ϕ
2W. Obviously ϕ ̸= 2π, and

let us assume also for now that ϕ ̸= π. Now for the subgroup containing W
to be normal, it must also contain all elements of the form

VWV−1 = V(cos
ϕ

2
+ sin

ϕ

2
W)V−1 = cos

ϕ

2
· 1 + sin

ϕ

2
VWV−1

As V is arbitrary, VWV−1 is an arbitrary rotation of the unit vector W,
and so VWV−1 is also an arbitrary vector. Hence the subgroup contain-
ing the rotation W must also contain rotations of ϕ about every rotation axis.

Now we demand that this group be closed, and show that this further re-
quirement generates the whole of SO(3).

We know that our potential normal subgroup contains a rotation of ϕ about
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the z−axis. Now we need to show that for any θ, a rotation of θ about the
z−axis must also be in our subgroup. This is easy. Suppose we have a point
A = (0, π2 ) and a point B = (θ, π2 ).

13.9 ⋆⋆
Let us denote the order of the group G by |G|. We are trying to show that
|G/S| = |G|/|S|. Now let H be the set H = G − S, ie. all the elements of G
not in S. We will need the following simple results:

1. If s ∈ S, then s ∗ S = S, the identity element.

2. The order of H is |H| = |G| − |S|.

• Suppose h1 ∈ H and s ∈ S. Then h1 ∗ s ∈ H. This is easy to show,
as suppose that h1 ∗ s ∈ S. Then h1 ∗ s ∗ s−1 = h1 ∈ S, which is a
contradiction.

3. Let h1 ∈ H. Then h1 maps each element of S into a unique element
of H. Uniqueness is easy to show, as h1 ∗ s1 = h1 ∗ s2 =⇒ s1 = s2

4. Let H1 = h1 ∗ S. Then |H1| = |S|. This follows from the last two
points.

5. Let H1 = h1 ∗ S. Now suppose h2 /∈ H1. Then h2 ∗ s /∈ H1. To see
this, suppose there is some s1, s2 ∈ S, such that h1 ∗s1 = h2 ∗s2. Then
h2 = h1 ∗ s1 ∗ s−1

2 . But there is some s ∈ S such that s = s1 ∗ s−1
2 .

Then h2 = h1 ∗ s ∈ H1. Contradiction!

We can thus conclude that after applying each of the elements of H to S, we
get a collection of sets H1,H2, . . .Hn. These sets are non-intersecting (from
point 5.) and each of order |S| (point 4.). Thus the number n of of these
sets must be

n =
|H|
|S|

=
|G| − |S|

|S|
=

|G|
|S|

− 1

Each of these sets is an element of G/S But we haven’t counted in S, which
is the identity element. Including this, we get

|G/S| = |G|
|S|

− 1 + 1 =
|G|
|S|

From another perspective, we have shown that the sets g ∗ S, where g ∈ G,
form a partition of G, meaning that either (g1 ∗ S) ∩ (g2 ∗ S) = ∅ or
(g1 ∗ S) = (g2 ∗ S), and that the union of all these sets is just the set
G. Knowing this, and that each set g ∈ G has order S, the result follows
easily.

33



Note: Sharp-eyed readers might wonder what would happen if |S| does
not divide |G|. Surely a group can’t have a fractional order! Indeed not.
The resolution to the problem is that the order of any subgroup of a group
G, must divide the order of the group G. This is known as Lagrange’s Theo-
rem, which we have effectively proven. A simple consequence, for example,
is that a group of prime order cannot have any (non-trivial) subgroups. pp

13.17 ⋆⋆
Suppose there exists v1 ̸= 0 such that Tv1 = 0. Now suppose our vector
space V is of dimension n. Then we can always find a set of n linearly
independent vectors {v1,v2, . . . ,vn} such that an arbitrary vector w ∈ V
can be written as a linear combination of these vectors.
Now let WT = {Tu : u ∈ V}. An arbitrary element of WT can be written

Tw = T(α1v1 + α2v2 + . . . αnvn)

= α1Tv1 + α2Tv2 + . . . αnTvn

= 0+ α2Tv2 + . . . αnTvn

And so the set {Tv2,Tv3, . . . ,Tvn} forms a basis for WT. But it has only
n− 1 elements, and so its dimension is smaller than that of V, and hence is
singular.

I think Penrose made a mistake with his hint, as he no where mentions
the determinant condition, which is that T is singular iff detT = 0. Then
a simple fact about determinants is that iff you swop two rows or columns,
then the determinant picks up a minus sign. But if there are two rows which
are the same, then swopping them leaves T unchanged, and so detT =
−detT =⇒ detT = 0. It is also obvious that if there is a row or column
of zeroes, then the determinant is also zero.

13.18 ⋆⋆
I am not completely sure what Penrose means by ‘not using explicit expres-
sions’.

The key fact we will use is that any bijective map has an inverse. (This
should be intuitively obvious.) We assume that T is non-singular. In our
case, we obviously don’t have to worry about T being surjective (onto).
So let us show it is injective (one-to-one). Now suppose Tv = Tu =⇒
T(v − u) = 0. But T is non-singular, and so v − u = 0 =⇒ v = u and so
T is injective, and hence bijective, and hence has an inverse.
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Another way of seeing this is to note that two vector spaces V and W of the
same dimension are basically the same, as they have an equivalent number
of basis vectors. One can easily find a linear map mapping the basis vectors
of W to basis vectors of V. Then the inverse of this map simply maps the
basis vectors of V to those of W.

13.25 ⋆⋆⋆
We present three proofs here. The first is what I think Penrose wanted,
and relies on the Jordan Canonical form, which is reffered to in Footnote
12 (whilst the second and third do not). The second is what I consider the
most elegant, whilst the third I found somewhere and relies on the least
amount of matrix algebra facts.

For the first and second proof, we need the fact that for any n × n ma-
trix A, which has eigenvalues λ1, λ2, . . . , λn,

detA = λ1λ2 . . . λn

traceA = λ1 + λ2 + . . .+ λn

which we found in Question [13.27].

Proof 1

Following Penrose, we first assume the eigenvalues of A, λ1, λ2, . . . , λn are
distinct, and show that

det eA = etrace A

holds for this case. We immediately have, iff A is an n× n matrix, that

etrace A = eλ1+λ2+...+λn

As the eigenvalues are distinct, we can always choose the eigenvectors of A
as the basis, and so express A in the Canonical form. In this basis, it can
easily be seen that

Ak =


λk1 0 . . . 0
0 λk2 . . . 0
...

... . . .
...

0 0 . . . λkn
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Hence

det eA = det

(
1 + A +

A2

2!
+ . . .

)

= det


1 + λ1 +

λ21
2! + . . . 0 . . . 0

0 1 + λ2 +
λ22
2! + . . . . . . 0

...
... . . .

...
0 0 . . . 1 + λn +

λ2n
2! + . . .



= det


eλ1 0 . . . 0
0 eλ2 . . . 0
...

... . . .
...

0 0 . . . eλn


= eλ1+λ2+...+λn = etrace A

Now when the eigenvalues are degenerate, the we cannot necessarily express
A in the Canonical form. But according to Footnote 12, we can find a basis
for A such that it will be in the Canonical form with at most some ones in
the next diagonal.
This Jordan Canonical form is evidently an upper triangular matrix. Two
easy to see facts about upper triangular matrices are that iff A is upper
triangular, then det(A) = a11a22 . . . ann, and the product of two upper tri-
angular matrices is also upper triangular. The last thing we note is that iff
A and B are upper triangular, and AB=C, then cii = ai bi. Using these
facts, it is easy to see that the proof for Canonical matrices will extend ex-
actly to matrices in the Jordan canonical form, and so degeneracies in the
eigenvalues can’t falsify the expression det eA = etrace A.

Proof 2

The method of this proof is to find the eigenvalues of eA, and then find
det eA. Now suppose A is again an n × n matrix with eigenvalues λ =
λ1, λ2, . . . , λn. Also, v is an n × 1 column vector. Then we immediately
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have that Anv = λnv, and so

eAv =

(
I+

A

1!
+

A2

2!
+

A3

3!
+ . . .

)
v

=

(
Iv +

Av

1!
+

A2v

2!
+

A3v

3!
+ . . .

)
=

(
1 · v +

λ · v
1!

+
λ2 · v
2!

+
λ3 · v
3!

+ . . .

)
= eλ · v

So iff λ is an eigenvalue of A, then eλ is an eigenvalue of eA. Hence

det eA = eλ1 · eλ2 · . . . · eλn

= eλ1+λ2+...+λn

= etraceA

Proof 3

Another interesting proof is one I found in t’Hoofts Lie Algebra notes. We
know that for a real number x,

ex = lim
m→∞

(
1 +

x

m

)m
Now the same holds iff we replace the x with a matrix A and the 1 with the
identity matrix I. This is because we prove the identity in the real case using
the binomial theorem, and as the only elements in the binomial expansion
for the matrix case are A and I, which commute with themselves and each
other, and so they behave just like real numbers. So the real proof will
hold for the matrix case too. Now let m be a natural number. Then using
det(AB) = det(A) det(B),

det eA = lim
m→∞

[
det

(
I + A

m

)m]
= lim

m→∞

[
det

(
I + A

m

)]m
Now we are only interested in terms of order 1/m, nothing O(1/m2). Now

det

(
I + A

m

)
= (1 +

a11
m

)(1 +
a22
m

) . . . (1 +
ann
m

) +O(
1

m2
)

= 1 +
1

m
(a11 + a22 + . . .+ ann) +O(1/m2)

= 1 +
1

m
trace(A) +O(1/m2)
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as the off diagonal elements in the determinant are obviously all of order
O(1/m2). Then we finally have

det eA = lim
m→∞

[
det

(
I + A

m

)]m
= lim

m→∞

[
1 +

1

m
trace(A) +O(1/m2)

]m
= etraceA

as in the limit m→ ∞ the terms O(1/m2) do not contribute in the above.

13.27 ⋆
The proof of these identities is trivial iff one notes two facts: The determi-
nant and trace of matrices are basis-independant quantities, and that one
can always choose a basis so that the matrix is in the Jordaan Normal form,
which Penrose alludes to in his Notes 13.12.

I am not sure whether Penrose wanted us to use this Jordaan normal form,
or rather just prove it for matrices expressible in the Canonical form on pg.
265, or there is some other way involving neither of these.

13.28 ⋆⋆⋆
To do the proof, we need some definitions. What is meant by an n-dimensional
vector space? Motivated by the vague definition of Chapter 11.1 pg. 199, we
say a vector space V is of dimension n iff there are n linearly independent
vectors k1,k2, . . .kn of V, which span25 V.

Now suppose we have a vector v ∈ V, where k is an n-dimensional vec-
tor space. Then from our definition, there exists some vectors k1,k2, . . .kn
such that

v = b1k1 + b2k2 + . . .+ bnkn

Now what we need to prove, is that given any other set of n linearly inde-
pendant vectors e1, e2, . . . en, there exist some set of constants x1, x2, . . . , xn
such that

v = x1e1 + x2e2 + . . .+ xnen

25A set of vectors k1,k2, . . .kn span the space V iff every element of V is equal to a
linear combination of the vectors k1,k2, . . .kn
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Now we note that as the set k1,k2, . . .kn spans V, we can write ei =∑n
j=1 aijkj . And so

x = x1e1 + x2e2 + . . .+ xnen =

n∑
i=1

xi

 n∑
j=1

aijkj


= k1

(
n∑
i=1

xiai1

)
+ k2

(
n∑
i=1

xiai2

)
+ . . .+ kn

(
n∑
i=1

xiain

)

as we can interchange the order of multiple sums. We can write this much
more elegantly if represent x with the column matrix x = (x1 x2 . . . xn)

T

in the basis e1, e2, . . . en, and also x′ = x = (x1 x2 . . . xn)
T in the basis

k1,k2, . . .kn. Then
x = Ax′

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
an1 an2 . . . ann


We have simply proven here what Penrose states at the top of page 265, the
transformation sending a vector from one base to another is linear.
Now we want to show that we can pick x1, x2, . . . , xn such that v = x. To
do this, we need to satisfy

v = x = Ax′

We can certainly do this iff A has an inverse, as then

x′ = A−1v

A necessary and sufficient condition for the inverse to exist is that iff for
some vector z, Az = 0 then z = 0, and nothing else. It is obvious why
this is a necessary condition, as we always have, for a linear transforma-
tion A that Az = 0 when z = 0. But if there is another z ̸= 0 such that
Az = 0, then A is not a one-to-one function, and there can’t be an inverse.26

Using the above fact, we see that x = Ax′ = 0 implies that x = (0, 0, . . . , 0)T

due to linear independence, and then x′ = (0, 0, . . . , 0)T . So there is only
one solution to Ax′ = 0, namely the zero vector, and so A has an inverse.
And so we have shown what was needed, that for any v ∈ V, we can write
v = x1e1+x2e2+ . . .+xnen for where e1, e2, . . . en are an arbitrary linearly

26We can prove the sufficient part as follows: A−1 exists iff A is non-singular. We then
use a theorem which says that a matrix A is non-singular iff its nullspace only contains
the zero vector.
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independen set of vectors.

Finally, we need to show uniqueness. Suppose we have

x = x1e1 + x2e2 + . . .+ xnen = y1e1 + y2e2 + . . .+ ynen

=⇒ (x1 − y1)e1 + (x2 − y2)e2 + . . .+ (xn − yn)en = 0

but the vectors are linearly independent, and so (xi − yi) = 0 =⇒ xi = yi,
and so x is uniquely represented in any particular linearly independent basis.
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16. The ladder of infinity
16.16 ⋆⋆⋆
We need to prove both ways of the implication.

1. Recursive =⇒ recursively enumerable
We suppose that the set S is recursive. Then there exists a Turing machine
TS(n) such that TS(n) = 1 iff n ∈ S and TS(n) = 0 iff n /∈ S. Now define
another Turing machine US(n) with

US(n) = n iff TS(n) = 1
US(n) does not halt when TS(n) = 0

Now it is evident that US(N) = S, as for those n for which US(n) doesn’t
halt, no output is produced by the machine, and so has no effect on the
set of all outputs of US(n), in our case S. Hence our set S is produced by
the action of a Turing machine (US(n)) and hence is recursively enumerable.

It is now trivial to see that the set S = N − S is also recursively enu-
merable, as we just modify US(n) so that US(n) = n iff TS(n) = 0 and
US(n) does not halt when TS(n) = 1.

2. recursively enumerable =⇒ recursive
We suppose that S and S are recursively enumerable. Thus there exist Tur-
ing machines TS and TS such that TS(N) = S and TS(N) = S. Now for S
to be recursive, we must be able to construct another Turing machine VS(n)
which can test tell whether or not n ∈ S. To do this, VS(n) runs TS(0) = a
and TS(0) = b. If a = n, then VS(n) = 1, and iff b = n, then VS(n) = 0. If
neither a nor b equal n, then it tries TS(1) = a and TS(1) = b and repeats
the previous steps. If it still hasn’t halted, it tries TS(2) and TS(2), etc.
Eventually it will halt, and spit out either 1 or 0. Hence S is recursive.

We can see why both S and S must be recursively enumerable for S to
be recursive. If only S were recursively enumerable, and not S, then we
could only check whether n ∈ S. If indeed n ∈ S, then our search will end.
But if n /∈ S, then we could never establish this, as our search would carry
on forever.
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19. The Classical Fields of Maxwell and Einstein
19.5 ⋆⋆
Below is a diagrammatic proof that ∗(∗F) = −F. An explanation:

e) Swopping two indices in the levi-civita tensor picks up a minus sign.

g) Two indices are swopped, picking up two minus signs.

h) Using one of the identities in Penroses Fig 12.18.

i) Using the fact that F is an antisymmetric tensor.

Using this, we have that

∗(±F) = 1

2
∗ (F∓ i ∗ F)

=
1

2
(∗F∓ i ∗ ∗F)

=
1

2
(∗F± iF)

=
i

2
((−i) ∗ F± F)

= ±i±F
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Figure 5: Diagrammatic proof of ∗(∗F) = −F
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20. Lagrangians and Hamiltonians
20.9 ⋆⋆⋆
We need to show that iff the n× n matrices P and Q are positive-definite,
then the product W = PQ must have positive eigenvalues. So suppose the
vector v is an eigenvector of W with eigenvalue λ. Then

(PQ)v = λv

=⇒ Qv = λP−1v

=⇒ vTQv = λvTP−1v

=⇒ λ =
vTQv

vTP−1v
> 0

As Q is positive-definite, we immediately have that vTQv > 0. Now there
are two things we need to prove for us to be able to conclude in the above
that λ > 0:

• vTP−1 v > 0, ie. that the inverse of a positive-definite matrix is also
positive-definite.

• Any positive-definite matrix actually has an inverse.

The way to see the first part is by changing our basis, v = P−1 x. We
note that P is a symmetric matrix, which means that its inverse is also
symmetric.27 Hence

0 < vTPv = xT (P−1)TPP−1 x = xT (P−1)T x = xTP−1 x

As x is an arbitrary non-zero vector, we have that P−1 is positive-definite.

The second part is quite simple. It is easy to see28 that any eigenvalue λi of a
positive-definite matrix P satisfies λi > 0. But detP = λ1λ2 . . . λn > 0 ̸= 0,
and hence P is non-singular and has an inverse.

20.12 ⋆⋆⋆
There is in fact an easy proof. It is obvious that rTQq = k. We need to
show that k = 0.

27This is easy to see. (PP−1)T = (P−1)TPT = (P−1)TP = I. As inverses are unique,
(P−1)T = P−1 and hence P−1 is symmetric.

28If you can’t immediately see this, then this can be shown as follows. Let P positive-
definite, with eigenvector v and eigenvalue λ. Then

vTPv = k > 0 =⇒ vTvλ = k =⇒ λ =
k

vTv
> 0

as obviously vTv > 0
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Assume Wr = ϕ2r and Wv = ω2v, where W = PQ, and ω ̸= ϕ. Then

rTQq = k =⇒ (ϕ2r)TQ (ω2q) = kϕ2ω2

=⇒ (Wr)TQ (Wq) = kϕ2ω2

=⇒ (rTQTPT )Q (PQq) = kϕ2ω2

=⇒ rT (QPQPQ)q = kϕ2ω2

=⇒ rTQ(WWq) = kϕ2ω2

=⇒ rTQ(ω4q) = kϕ2ω2

=⇒ rTQq =
kϕ2

ω2

=⇒ kϕ2

ω2
= k

But this is only satisfied if ω = ϕ or if k = 0.29 As one of the assumptions
was that ω ̸= ϕ, we must have that k = 0 and hence rTQq = 0, as we
wanted to show.

29What about if either ω or ϕ are zero? We have that ω, ϕ ̸= 0, as we showed that the
eigenvalues of W can’t equal zero in question 20.9.
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21. The Quantum Particle
21.1 ⋆

(1 +D2) cosx = cosx+D2 cosx

= cosx−D sinx

= cosx− cosx

= 0

The other one is done exactly like this one.

21.2 ⋆⋆
The first fact we will need is that y(x) = A cosx+B sinx is the most general
solution30 to

(1 +D2)y(x) = 0

Now suppose y1(x) and yp(x) are both solutions to (1+D2)y(x) = x5. Then

(1 +D2)y1 = x5 = (1 +D2)yp

=⇒ (1 +D2)y1 − (1 +D2)yp = 0

=⇒ (1 +D2)[y1 − yp] = 0

=⇒ y1 − yp = A cosx+B sinx

Now suppose y1 is the most general solution to (1 + D2)y(x) = x5, and
yp = x5 − 20x3 + 120x. Then we have from the above that

y1 = A cosx+B sinx+ yp

= (A cosx+B sinx) + (x5 − 20x3 + 120x)

21.3 ⋆⋆⋆
Following Penrose,

1

1 +D2
(1 +D2) cosx =

1

1 +D2
· 0 = 0

Thus applying the inverse operator does not give us cosx, as we would want
from a real inverse.

30I am not sure how to show this in an elementary way. The standard approach is to
show that cosx and sinx are linearly independant, and so span the solution space of the
second-order differential equation, and hence their linear combination is the most general
solution.
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Let L = a0 + a1D + a2D
2 + . . . + anD

n. We can see that in general, we
cannot find an ‘inverse’ for any differential equation of the form

Ly(x) = 0

as the method always gives y(x) = 0, which is obviously not the only solu-
tion. One of the reasons that the linear operator L does not have an inverse,
is that it is not in general bijective. For example,

(1 +D2) cosx = 0 = (1 +D2) sinx

Using the idea from the previous question, suppose y1 and yp are solutions
to the general differential equation Ly(x) = f(x), then

Ly1 = f(x) = Lyp
=⇒ L(y1 − yp) = 0

Let k(x) = y1 − yp. Then supposing y1 to be the most general solution to
Ly(x) = f(x) and yp some other solution, we see that y1 = k + yp.

Now the key is to note is that our procedure of inverting L will always
find a solution yp(x), but won’t find k(x). So the general procedure for solv-
ing equations of the form Ly(x) = f(x) is to find an inverse L−1 using the
series method in order to find yp , and then solve the equation Lk(x) = 0 to
obtain k, and hence obtain the general solution y1 = yp + k.

As for solving Lk(x) = 0, this can be done in a variety of ways. One is
by assuming k is analytic, and so is of the form k(x) = a0+a1x+a2x

2+ . . .,
and then acting on the series with L. With skill, one can find recursion
relations, which allow one to find the form of the series k(x).

21.5 ⋆⋆
The normal procedure for constructing the most general solution this sort
of partial differential equation is use the method of seperation of variables.
Doing this would require a knowledge of Airy functions, which is hardly
what Penrose must have in mind.

Thus we look for a solution by intelligent guesswork. We think it may
be some exponential depending on both z and t. After playing around, you
should find that

Ψ(t, z) = Ae−i(
mg2

6ℏ t3+mg
ℏ tx)

satisfies the given Shrodinger equation.

It should be noted again that this is not going to be the most general solution
to the Schrodinger equation with potential V = mgz.
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22. Quantum algebra, geometry, and spin
22.2 ⋆⋆⋆
What Penrose seems to want here is for one to prove the Cauchy-Schwarz
inequality, as the desired result follows straight from that. Here is a proof I
typed up for a quantum mechanics tutorial a long time ago!

Schwarz inequality 1. Let ϕ and ψ be vectors in an inner product space.
Then

| ⟨ϕ|ψ⟩ |2 ≤ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩

Proof. We have that if either ϕ of ψ is 0, then the inequality is trivially
satisfied. So suppose that both ψ and ϕ are both non-zero. Letting λ ∈ C,
then

0 ≤ ⟨ϕ− λψ|ϕ− λψ⟩
= ⟨ϕ|ϕ⟩ − λ ⟨ϕ|ψ⟩ − λ ⟨ψ|ϕ⟩+ |λ|2 ⟨ψ|ψ⟩

Now we can represent ⟨ϕ|ψ⟩ as | ⟨ϕ|ψ⟩ | eiα, where α ∈ R. We then have that

⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩ = | ⟨ϕ|ψ⟩ | e−iα

Using this, we have that

0 ≤ ⟨ϕ|ϕ⟩+ |λ|2 ⟨ψ|ψ⟩ − λ| ⟨ϕ|ψ⟩ | eiα − λ| ⟨ϕ|ψ⟩ | e−iα

Now let λ = reiα, where r ∈ R. Then

0 ≤ ⟨ϕ|ϕ⟩+ r2 ⟨ψ|ψ⟩ − 2r| ⟨ϕ|ψ⟩ |

Letting r = |⟨ϕ|ψ⟩|
⟨ψ|ψ⟩ , (we can do this as ϕ ̸= 0) we have that

0 ≤ ⟨ϕ|ϕ⟩+
(
| ⟨ϕ|ψ⟩ |
⟨ψ|ψ⟩

)2

⟨ψ|ψ⟩ − 2
| ⟨ϕ|ψ⟩ |
⟨ψ|ψ⟩

| ⟨ϕ|ψ⟩ |

= ⟨ϕ|ϕ⟩ − | ⟨ϕ|ψ⟩ |2

⟨ψ|ψ⟩

=
⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩ − | ⟨ϕ|ψ⟩ |2

⟨ψ|ψ⟩
=⇒ 0 ≤ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩ − | ⟨ϕ|ψ⟩ |2

=⇒ | ⟨ϕ|ψ⟩ |2 ≤ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
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A quick comment: Penrose wants us to consider integrals. But it is
easy to show that the particular integral expression satisfies the axioms of
a scalar product, and so we can apply our inequality. If both ∥ψ∥ and ∥ϕ∥
converge, then ∥ψ∥ · ∥ϕ∥ = k where k is some finite real number. Then
we know that | ⟨ϕ|ψ⟩ | is certainly bounded and can’t diverge. But what if
⟨ϕ|ψ⟩ oscillates? This inequality does not then help. Though I don’t think
Penrose wants us to consider this case...

22.9 ⋆⋆
We know that the unitary operators evolve as iℏ d

dtU(t) = HU(t). As U−1 =

U∗, then [iℏ d
dtU(t)]∗ = H∗U∗(t) =⇒ −iℏ d

dtU
−1(t) = HU−1(t) as the

Hamiltonian H is Hermitean. Also, QH(t) = U−1(t)Q(0)U(t). Then

iℏ
d

dt
QH(t) = iℏ

dU−1

dt
Q(0)U(t) + iℏU−1Q(0)

dU(t)

dt
= −HU−1Q(0)U(t)︸ ︷︷ ︸

QH(t)

+U−1Q(0)U(t)︸ ︷︷ ︸
QH(t)

H

= QH(t)H−HQH(t)

= [QH(t),H]

Obviously Penrose made a small mistake writing [H,QH(t)] instead of [QH(t),H].

22.11 ⋆⋆⋆
If Q∗ commutes with Q, then (Q∗ − λI) commutes with (Q − λI). Now
suppose Q |ψ⟩ = λ |ψ⟩. Then

0 = ⟨ψ| (Q∗ − λI)(Q− λI) ψ⟩
= ⟨ψ| (Q− λI)(Q∗ − λI) ψ⟩
=
〈
(Q∗ − λI)ψ

∣∣ (Q∗ − λI) ψ⟩

But this implies that (Q∗ − λI) |ψ⟩ = 0 and hence Q∗ |ψ⟩ = λ |ψ⟩.

Now suppose we have Q |ϕ⟩ = η |ϕ⟩ where η ̸= λ. Now

⟨Qϕ|Q ψ⟩ = ⟨ηϕ|λ ψ⟩
= η λ ⟨ϕ| ψ⟩

= ⟨ϕ|Q∗Q ψ⟩
=|λ|2 ⟨ϕ| ψ⟩

Hence (η λ−|λ|2) ⟨ϕ| ψ⟩ = 0. But λ ̸= η =⇒ |λ|2 ̸= η λ, and hence ⟨ϕ| ψ⟩ =
0. Thus the eigenvectors of distinct eigenvalues are indeed orthogonal for
normal operators, as we wanted to show.
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22.12 ⋆⋆⋆
In question 22.2 we proved the Cauchy-Schwarz inequality

| ⟨ϕ|ψ⟩ |2 ≤ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩

With this result, this question is trivial. As ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩, we have

⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩
⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩

=
| ⟨ϕ|ψ⟩ |2

⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
≤ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩

⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
= 1

It is also obvious that our expression is real and that

| ⟨ϕ|ψ⟩ |2

⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
≥ 0

It is obvious that if |ψ⟩ = λ |ϕ⟩, then |⟨ϕ|ψ⟩|2
⟨ϕ|ϕ⟩⟨ψ|ψ⟩ = 1. But we need to show

the converse, that if |⟨ϕ|ψ⟩|2
⟨ϕ|ϕ⟩⟨ψ|ψ⟩ = 1, then |ψ⟩ = λ |ϕ⟩. One way is as follows.

Suppose |ψ⟩ is an element of an n-dimensional vector space V, where n could
be infinte. We can always find an orthogonal set of n basis vectors including
|ψ⟩.31 Hence we can find a |ζ⟩ ∈ V such that |ϕ⟩ = λ |ψ⟩+ |ζ⟩ and that |ζ⟩
is orthogonal to λ |ψ⟩. |ζ⟩ is obviously some linear combination of the other
n− 1 basis vectors. Then

| ⟨ϕ|ψ⟩ |2

⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩
= 1

=⇒ | ⟨ϕ|ψ⟩ |2

⟨ψ|ψ⟩
= ⟨ϕ|ϕ⟩

=⇒ | ⟨ (λψ + ζ) |ψ⟩ |2

⟨ψ|ψ⟩
= ⟨(λψ + ζ)|(λψ + ζ)⟩

=⇒ |λ|2 ⟨ψ|ψ⟩2

⟨ψ|ψ⟩
= |λ|2 ⟨ψ|ψ⟩+ 0 + 0 + ⟨ζ|ζ⟩

=⇒ ⟨ζ|ζ⟩ = 0

and so |ζ⟩ = 0, and |ϕ⟩ = λ |ψ⟩, as we wanted.

22.13 ⋆⋆
Suppose Q satisfies the arbitrary polynomial equation

Qn + an−1Q
n−1 + . . . a1Q+ a0I = 0

31We can always use the Gram-Schmidt procedure to explicitly construct this set of
basis vectors.
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Now suppose v is some eigenvector of Q, with eigenvalue λ. Then

Qn · v + an−1Q
n−1 · v + . . . a1Q · v + a0I · v = 0 · v

=⇒ λn · v + an−1λ
n−1 · v + . . . a1λ · v + a0v = 0

=⇒ (λn + an−1λ
n−1 + . . . a1λ+ a0) · v = 0

As eigenvectors are by definition non-zero, we must have that

λn + an−1λ
n−1 + . . . a1λ+ a0 = 0

As this eigenvector-eigenvalue pair was arbitrary, we conclude that each of
the eigenvalues of Q also satisfies any polynomial equation of Q.

The converse is also true, that if the eigenvalues of Q satisfy a polyno-
mial equation, then Q also satisfies this equation. This is known as the
Cayley-Hamilton theorem.
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24. Dirac’s electron and antiparticles
24.9 ⋆⋆⋆
Part 1

We need to show that we cannot use 2× 2 matrices to represent our Dirac-
Clifford algebra. The key fact is that

• The set {1, γ0, γ1, γ2, γ3} is linearly independant.32 This is easy to
show.

So to represent our algebra, we obviously need 5 linearly independent matri-
ces. But 2× 2 matrices have at most 4 linearly independent matrices. This
is because the set {(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
is linearly independent, and spans33 the space of 2×2 matrices. Hence 2×2
matrices are unsuitable for using as a representation for our algebra.

Part 2

The identity 1 obviously gets sent to the identity matrix.

First note that we have already found a representation for the quaternions,
the Pauli matrices. These are34

σ0 =

(
1 0
0 1

)
= I2, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
A key property of the Pauli matrices are that

• (σi)
2 = I2 for i = 0, 1, 2, 3.

But (γ1, γ2, γ3) satisfy the same algebra as the quaternions, so they ought
to somehow correspond to (σ1, σ2, σ3). One way of building larger matrices
from smaller ones is to take the direct product, ⊗. This has the property
that if A,B,C,D are n× n matrices, then

(A⊗B)(C⊗D) = (AC)⊗ (BD)

and A ⊗ B is ofcourse an n2 × n2 matrix. But that is precisely what we
want! We have 2× 2 matrices and want 4× 4 matrices.

32Penrose assumes this implicitly when doing his counting in section 11.5.
33Meaning any 2× 2 matrix can be written as a linear combination of these matrices.
34See Section 22.8
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Now suppose A is some arbitrary 2 × 2 matrix. Then suppose we try
γi = σi ⊗A. Then

(γi)
2 = (σi)

2 ⊗A2 = I2 ⊗A2 = −I4

iff i = 1, 2, 3 and (γ0)
2 = I4 for i = 0. Hence for i = 1, 2, 3, A2 = −I2. Thus

we can use any of the Pauli matrices times i to represent A. Let us choose
A = iσ2. But for i = 0, we can’t use A = iσ2, because of the i. But even
if we used A = σ2, this would still not work, as then γ0 = I2 ⊗ σ2 would
commute with all the other γi’s. Thus we use some other Pauli matrix, such
as σ3, and get γ0 = I2 ⊗ σ3. Finally we have then that

γ0 =

(
I2 0
0 −I2

)
= I2 ⊗ σ3

γi =

(
0 σi

−σi 0

)
= σi ⊗ iσ2

It can then be mechanically verified that this satisfies the Clifford algebra.
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Appendix
Jordan’s Lemma
Theorem 1. Suppose γ is a semicircular arc in the upper-half plane.35

Then for a function f(z) of a complex variable z, if

• f(z) is analytic in the upper half-plane except for a finite number of
poles in Im z > 0,

• the maximum of |f(z)| → 0 as |z| → ∞ in the upper half-plane

• m > 0

then
Iγ =

∫
γ
eimzf(z) dz → 0 as R→ ∞

Proof. The proof hinges on the identity36

2θ

π
≤ sin θ ≤ θ

where 0 ≤ θ ≤ π
2 . We also have, with z = Reiθ, that

|eimz| = |eimR(cos θ+i sin θ)| = |e−imR sin θ|

Then

Iγ ≤
∫
γ
|eimzf(z)||dz| ≤

∫ π

0
|e−imR sin θ| ·M · |iReiθdθ|

= 2RM

∫ π
2

0
e−imR sin θdθ

≤ 2RM

∫ π
2

0
e−imR(2θ/π)dθ

=
πM

m

(
1− e−mR

)
<
πM

m

But M → 0 as R→ ∞, hence Iγ → 0 as R→ ∞.

35γ = {Reiθ : 0 < θ < π}
36A quick way of proving this is as follows: It is geometrically obvious that sin θ ≤ θ.

To show that 2θ
π

≤ sin θ, we note that initially d
dθ

2θ
π

= 2
π

≤ d
dθ

sin θ = cos θ = 1. So
initially the inequality holds. Then we note that at θ = 0 and θ = π/2, there is equality.
But geometrically, there can only be a maximum of two intersection points between a
straight line and the sin θ curve in this range, and so the equality holds in the whole range
0 ≤ θ ≤ π/2.
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