PLANNING-BASED RL

ALPHAZERO

w

\\/‘: BFI LONDON <
“/' FEST|VAL EILME ST!VA'.

¥ WINNER }
Y

TRAVERSE CITY ! erle. VALLEY . .
tresTvAL S iﬁj\lLM FESTIVAL Official Selection
= 2017 WARSAW FILM FESTIVAL

Y '\\\'\’\”
(o
W

(17

.

\

ALPHAGO

Critics Consensus
No consensus yet.

‘100% i 100%

TOMATOMETER AUDIENCE SCORE
Total Count: 9 User Ratings: 115

ALPHA AND MUZERO

GO

o
.'.' i

:go;:giz:;'t.f “"

.’Qﬁi .'.'z.g

:
oils ‘ogs |

» ~107170 board positions
» ~10782 atoms in (observable) universe
» Might never be possible to brute-force solve Go

» The only ‘reward’ signal: win/loss at end of game!

ALPHA AND MUZERO

GO

Naive Solution: Exhaustive Search

Taken from David Silver, 2020

ALPHA AND MUZERO

TIMELINE: ALPHA-FAMILY

» 2016: AlphaGo

» Only plays Go. Beats world champion
» 2017: AlphaGo Zero

» Removed need to train on human games first
» 2018: AlphaZero

» Generalized to work on Go, Chess, Shogji, etc.

» Beat world computer champion, Stockfish

» Stockfish has vast amounts of domain-specific engineering (14,000 LOC)

» 2019: MuZero

» Learns rules of games

» Works for single-agent reinforcement learning (eg Atari)

ALPHA AND MUZERO

IDEA 1: REDUCE SEARCH SPACE WITH NEURAL NET

(pa U) — fQ(S)

» s: state of the game (eg board position)
» p: a probability distribution over possible actions
» v: ascalar value. The expected outcome of game in state s

» 0:learnable neural net parameters

IDEA 1: REDUCE SEARCH SPACE WITH NEURAL NET

REDUCE SEARCH WIDTH

Reduce search-width with policy p

|

ﬁ/ } %

Taken from David Silver, 2020

IDEA 1: REDUCE SEARCH SPACE WITH NEURAL NET

REDUCE SEARCH DEPTH

Reduce search-depth with value v

A e
ot —

IDEA 1: REDUCE SEARCH SPACE WITH NEURAL NET

MAKING A MOVE: MCTS

» Before making a real move:

» Search: try the most promising moves in its mind, and see which leads to the
highest value!

» A position that looks good at first glance might lead to checkmate in 5
moves

» Obviously needs to know the rules/environment model
» Also add some noise to search: explore vs exploit
» Known as Monte-Carlo Tree Search (MCTS)

» Use the results of this search to create new, better policy f)

» MCTS can be seen as a policy improvement operator

TEXT

IDEA 2: USE MCTS POLICY FOR TRAINING OBJECTIVE

» Reward Sparsity: win/loss/draw at end of game
» Can take hundreds of moves to get there!
» Solution: train the neural net so that p is the same as P

» Minimize cross-entropy between two distributions

»Calphazero — (Z — U)Z - p 1Og(p)

IDEA 2: USE MCTS POLICY FOR TRAINING OBJECTIVE

SAME IDEA: EXPERT ITERATION

.

b

Expert Imitation
Improvement Learning
(MCTS)

[Apprentioe J

P

Taken from: Thinking Fast and Slow with Deep Learning and Tree Search, T. Anthony et al, 2017

IDEA 3: SELF-PLAY

» Difference with normal RL
» Don’t have an agent to play against!

» How to evaluate strength?

“Modern learning algorithms are outstanding test-takers: once a problem is packaged
into a suitable objective, deep (reinforcement) learning algorithms often find a good
solution. However, in many multi-agent domains, the question of what test to take, or what
objective to optimize, is not clear... Learning in games is often conservatively formulated as
training agents that tie or beat, on average, a fixed set of opponents. However, the dual
task, that of generating useful opponents to train and evaluate against, is under-studied. It is
not enough to beat the agents you know; it is also important to generate better opponents,
which exhibit behaviours that you don’t know.” ~ Balduzzi et al. (2019)

IDEA 3: SELF-PLAY

IDEA 3: SELF-PLAY

» Two types of game:
» Transitive: Chess, Go, etc
» Intransitive (or Cyclic): Rock-Paper-Scissors, StarCraft

» Transitive games have a special property: if agent A beats
agent B and B beats C, then A beats C

» Basis of ELO rating system in Chess

IDEA 3: SELF-PLAY

IDEA 3: SELF-PLAY

» Self-Play Algorithm
» Start with neural net agent f;

» Play f; against itself to generate training data

. . . _ ~ T
» Train f; on this data using Lalphazero = (2 — v)* —p" log(p)
to produce 1>

» Repeat

» Key: f, will beat fy, f2, ... due to transitivity!

IDEA 3: SELF-PLAY

ALPHASTAR FOR INTRANSITIVE GAMES: NEEDS HUMAN GAMES!

oA oo 5 - g

Render of Agent's view]

l AlphaStar

o~
.('J -

4
?_"v

- . \" - Considered Location

- A -
Raw Observations Neural Network Activations vy o \‘?
\

e

’
$
' Considered Build/Train

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

TEXT

IDEA 4: A LEARNED MODEL + MCTS = POWER

» For things like Atari, or almost any real-world RL
problem, we don’t know the rules/model:

» if | have a state s; and take action a, what will state s>
be?

» MuZero: use RNN to predict next state given previous
states + previous actions!

» Then use for planning with MCTS like in AlphaZero

TEXT

IDEA 4: A LEARNED MODEL + MCTS = POWER

PacMan Reward

C
250k — MuZero
Q-Learning
--= R2D2
200K
=
T 150k -
()
nd
=
o 100k -
=
ook -/
Ok , , . . i
0.0 0.2 04 0.6 0.8 1.0

Millions of Training Steps

TEXT

ALPHA ZERO

» ldea 1: Reduce search-space with policy-value neural net

» Needs rules/model of environment. Can be learnt
(MuZero)

» ldea 2: Use the MCTS policy as the training objective
» Idea 3: Use self-play to generate training data

» Idea 4: MCTS with a learned model of the world worlds
well

COMPARISON TO HUMANS

COMPARISON TO HUMANS: DUAL PROCESS THEORY

“System 1 operates automatically and
quickly, with little or no effort and no
sense of voluntary control. System 2
allocates attention to the effortful mental
activities that demand it, including
complex computations. The operations of
System 2 are often associated with the
subjective experience of agency, choice,
and concentration.”

IDEASINEIENIE
KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS

COMPARISON TO HUMANS

COMPARISON TO HUMANS: DUAL PROCESS THEORY

Dual process theory of thought

System 1 System 2
Fast / Automatic Slow / Effortful
Emotional Logical

- Impulses / Drives - Reflection

- Habits - Planning

- Beliefs - Problem solving

ggl;i(;vriom @BehaviourDesign
Neural Net Neural Net used in MCTS

Taken form David Barber Learning From Scratch by Thinking Fast
and Slow with Deep Learning and Tree Search

TEXT

COMPARISON TO HUMANS

Amount of Search per Decision

Human State-of-the-Art
Grandmaster Chess Engines
‘ °
100" s 10,000,000 s
of moves of moves

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

LESSONS

LESSONS FROM IMPLEMENTING

DeepMind OpenSpiel (hitps://github.com/deepmind/open_spiel): “OpenSpiel is a
collection of environments and algorithms for research in general reinforcement learning
and search/planning in games.”

] deepmind / open_spiel ® watch~ 89

Code Issues 9 i Pull requests 0 Actions Projects 0 Wiki Security Insig

Python AlphaZero #134

Yl OpenSpiel merged 12 commits into deepmind:master from Aule-AI:python_alpha_zero [15 days

(9 Conversation 25 - Commits 12 B Checks 0 Files changed 5

sbodenstein commented on Jan 17 - edited ~ Contributor + (&) «** Re

This AlphaZero implementation has many design issues that need to be resolved before finalizing
the PR (eg. there are no tests, and input validation is not production-ready yet). It trains well on

tic-tac-toe (see examples/tic_tac_toe_alpha_zero.py), giving confidence that the As
implementation is correct. N/

https://github.com/deepmind/open_spiel

LESSONS

LESSONS FROM IMPLEMENTING

» A simple tic-tac-toe example

» Takes around ~2 mins to train on laptop

python open_spiel/python/examples/tic_tac_toe_alpha_zero.py

10225 12:29:52.672022 4576402880 tic_tac_toe_alpha_zero.py:155] Starting round @ out of 25
10225 12:29:52.672169 4576402880 tic_tac_toe_alpha_zero.py:160] Playing 50 games against the minimax player.

10225 12:30:10.688238 4576402880 tic_tac_toe_alpha_zero.py:164] Result against Minimax player: 49 losses and 1 draws.
10225 12:30:10.688338 4576402880 tic_tac_toe_alpha_zero.py:166] Running 100 games of self play

10225 12:30:24.127839 4576402880 tic_tac_toe_alpha_zero.py:169] Training the net for 1@ epochs.

Epoch @ mean losses. Total: 3.17, Policy: 2.26, Value: 0.892, L2: 0.0134

Epoch 1 mean losses. Total: 2.89, Policy: 2.12, Value: 0.757, L2: 0.0132

Epoch 2 mean losses. Total: 2.78, Policy: 2.07, Value: 0.704, L2: 0.0132

Epoch 3 mean losses. Total: 2.69, Policy: 2.03, Value: 0.638, L2: 0.0133

Epoch 4 mean losses. Total: 2.65, Policy: 2.02, Value: 0.623, L2: 0.0135

Epoch 5 mean losses. Total: 2.58, Policy: 1.98, Value: 0.587, L2: 0.0137

Epoch 6 mean losses. Total: 2.52, Policy: 1.93, Value: 0.574, L2: 0.014

Epoch 7 mean losses. Total: 2.52, Policy: 1.93, Value: 0.578, L2: 0.0144

Epoch 8 mean losses. Total: 2.41, Policy: 1.87, Value: 0.527, L2: 0.0147

Epoch 9 mean losses. Total: 2.43, Policy: 1.84, Value: 0.571, L2: 0.0152

10225 12:30:24.672239 4576402880 tic_tac_toe_alpha_zero.py:155] Starting round 1 out of 25
10225 12:30:24.672328 4576402880 tic_tac_toe_alpha_zero.py:166] Running 100 games of self play

10225 12:30:38.603941 4576402880 tic_tac_toe_alpha_zero.py:169] Training the net for 1@ epochs.

Epoch @ mean losses. Total: 2.49, Policy: 1.87, Value: 0.607, L2: 0.0157

O 00O ~NOO UL A WNRKEOS
N NN NN NNN
P P P NNNN

[~ I~ T~ I~ T~ T~ R~ T~ R~ T~

[I~ B~ B~ B R T T T

LESSONS

LESSONS: HYPERPARAMETERS

“The hyperparameters of AlphaGo Zero were tuned by Bayesian
optimization.” ~ AlphaZero paper

WO

» Luckily, only two game specific hyper parameters

» Found reasonable values for tic-tac-toe with some trial
and error

LESSONS

LESSONS: OPENSOURCE

» Code reviews by real experts

» You cannot buy the sort of feedback you can get from DeepMind engineers/
researchers!

» Its easy to fool yourself that you understand something better than you do
» Fortuitous Connections
» Looks good for employers

» “Research and software engineer experience demonstrated via an
internship, contributions to open source, work experience, or coding
competitions.” ~ from recent Cape Town Al company job posting

» Benefits others!

LESSONS

OPENSPIEL CALL FOR CONTRIBUTIONS

See: https://github.com/deepmind/open_spiel/blob/master/docs/contributing.md

should be possible in a future update.

e Grid Worlds. There are currently four grid world games in OpenSpiel: Markov soccer, the coin game, cooperative
box-pushing, and laser tag. There could be more, especially ones that have been commonly used in multiagent
RL. Also, the current grid worlds can be improved (they all are fully-observable).

e Heuristic Payoff Tables and Empirical Game-Theoretic Analysis. Methods found in Analyzing Complex Strategic
Interactions in Multi-Agent Systems, Methods for Empirical Game-Theoretic Analysis, An evolutionary game-
theoretic analysis of poker strategies, Ref4.

e Monte Carlo Tree Search Solver. General enhancement to Monte Carlo tree search, backpropagate proven wins
and loses as far up as possible. See Winands el al. '08.

e Minimax-Q and other classic MARL algorithms. Minimax-Q is a classic multiagent reinforcement learning
algorithm (Markov games as a framework for multi-agent reinforcement learning. Other classic algorithms, such as
Correlated Q-learning, NashQ, and Friend-or-Foe Q-learning (Friend-or-foe g-learning in general-sum games
would be welcome as well.

¢ Nash Averaging. An evaluation tool first described in Re-evaluating Evaluation.

¢ Negotiation Games. A game similar to the negotiation game presented in Ref1, Ref2. Also, Colored Trails
(Modeling how Humans Reason about Others with Partial Information, Metastrategies in the coloredtrails game.

e Opponent Modeling / Shaping Algorithms. For example, DRON, LOLA, and Stable Opponent Shaping.

e PyTorch. While we officially support Tensorflow, the APl is agnostic to the library that is used for learning. We
would like to have some examples and support for PyTorch as well in the future.

e Repeated Games. There is currently no explicit support for repeated games. Supporting repeated games as one
sequential game could be useful for application of RL algorithms. This could take the form of another game

https://github.com/deepmind/open_spiel/blob/master/docs/contributing.md

BACKPROP IN THE BRAIN

THANKS FOR LISTENING!

