SEBASTIAN BODENSTEIN

PART 1: PYTHON

PART 1: PYTHON

PYTHON IS EATING THE WORLD

Growth of major programming languages in non-high-income countries
Based on Stack Overflow question views in countries not classified as high-income by the World Bank.

0,
12.5%
--
.. .--=-javascript
~~f
-
PR R mama
_______ - . ava
* -~ -~
P - PR R '~
RS S s -~
Sa_aemmeL L em e Smar s, -
- ~ - e
-

~ -
f--- -
o= e S=- -"a - -
0, . -~ - g St
/0 . . 4 PRarS [
. ¢ - ° -~ Y
- PR S
- - P -
- - -
F—
.........
.
-
‘‘‘‘‘‘ -
L
_____ P Yo -
P DI a? Smea R C#
i P R
0/
. o e T Y e PRl I
LT mamt e TR e L, "
-
-
-
.=
-

5.0%

% of overall question views each month

2.5%

0.0%

2012 2014 2016 2018
Time

Taken from: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

PART 1: PYTHON

PYTHON IS EATING THE WORLD

@g&% MIT CSAIL & v

csain. @MIT_CSAIL

Last year “Python"” was Googled more in the US than “Kim
Kardashian.” #themoreyouknow #PyCon2019
superuser.openstack.org/articles/pytho...

Interest over time Google Trends

® Kim Kardashian @ Python

lm

Average Dec 24, 201 Nov 18, 2018

4:29 PM - May 3, 2019 - Twitter for iPhone

PART 1: PYTHON

ITS COMPETITORS

9.00%
8.00% -

N —

T 7.00%-

5 .

S

@ 6.00%-—

N -

o

7))

§ 5.00% —

-+

N

8 4.00%-

o

=

© 3.00%-—

i

& 2.00%-

-

Q

g 1.00% —

S

52 0.00% —

Tag

® python
or
© julia-lang

2009

2010 2011 2012 2013 2014 2015 2016 2017

Year

Taken from: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

PART 1: PYTHON

PYTHON PROBLEMS: EXECUTION SPEED

Python
def fib(n):
1T n<2:
return n
return fib(n-1)+fib(n-2)

C

int fib(int n) {
return n <2 ? n : fib(n-1) + fib(n-2);
¥

Julia
fib(n) = n<2 ? n : fib(n-1) + fib(n-2)

» Question: how much longer will it take Python to compute fib(20) than C?

» ~100x

PART 1: PYTHON

PYTHON PROBLEMS: EXECUTION SPEED

» Writing fast Python code effectively requires a second language:
» C/C++ (eg. PyTorch and TensorFlow are mostly written in C++)
» There is Numba, Pythran, etc: allow the compilation of a small subset of Python.
» Need to learn what this subset is, and only use that!
» This is the infamous two-language problem

» bad for developer productivity

PART 1: PYTHON

PYTHON PROBLEMS: EXECUTION SPEED

Optimized Python
code is still slow

Is it numerical No Rewrite hotspots in Fortran
code? - or C and interface via CFFI

Yes

No

A\
Canit be No
vectorized?
Yes

PART 1: PYTHON

PYTHON PROBLEMS: GIL

As a few of you might know, C Python has a
Global Interpreter Lock (GIL)

>>> import that
The Unwritten Rules of Python

1. You do not talk about the GIL.
2. You do NOT talk about the GIL.
3.

Don't even mention the GIL. No seriously.

Taken from: Understanding the Python GIL, David Beazley, PyCon 2010

PART 1: PYTHON

PYTHON PROBLEMS: GIL

import threading
import time

def countdown(n):
while n > 0:
n —= 1

COUNT = 100000000 # 100 million

This take ~5s
countdown (COUNT)

Q: How long does this take?

tl = threading.Thread(target=countdown,args=(COUNT//2,))
t2 = threading.Thread(target=countdown,args=(COUNT//2,))
tl.start(); t2.start()

tl.join(); t2.join()

PART 1: PYTHON

PYTHON PROBLEMS: GIL

» ANSWER:
» ~5s
» Why?

» The GIL makes sure that only one thread runs in the interpreter at
once

» Simplifies low-level details, eg. memory management
» Single-threaded Moores Law is dead:

» need parallelism to take advantage of all future hardware speedups

julia

PART 2: JULIA

PART 2: JULIA

JULIA MISSION STATEMENT

"We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others
Rubyists, still others Perl hackers. There are those of us who used Mathematica before we
could grow facial hair...

We love all of these languages; they are wonderful and powerful. For the work we do —
scientific computing, machine learning, data mining, large-scale linear algebra, distributed
and parallel computing — each one is perfect for some aspects of the work and terrible for
others. Each one is a trade-off.

We are greedy: we want more.

We want a language that’s open source, with a liberal license. We want the speed of C with
the dynamism of Ruby... We want something as usable for general programming as Python,
as easy for statistics as R, as natural for string processing as Perl, as powerful for linear
algebra as Matlab... Something that is dirt simple to learn, yet keeps the most serious
hackers happy. We want it interactive and we want it compiled.

(Did we mention it should be as fast as C?)" ~ Why We Created Julia, J Bezanson et al

PART 2: JULIA

JULIA MISSION STATEMENT

» Designed to solve the two-language problem

» virtually all Julia packages are written in pure Julia!
» Release Dates:

» Python: 1991

» Julia: 2012
» Julia downloads to date:

» 3.2 million

PART 2: JULIA

THE 100

The 100 is a SciFi set in 150 years time. The source code of one of the Als was Julia! https://
juliacomputing.com/communication/2017/09/19/julia-the-ai-language-for-next-150-years.html

https://juliacomputing.com/communication/2017/09/19/julia-the-ai-language-for-next-150-years.html
https://juliacomputing.com/communication/2017/09/19/julia-the-ai-language-for-next-150-years.html

PART 2: JULIA

DEMO

PART 2: JULIA

ADVANTAGES

» The compilability of Julia mainly benefits package developers:

» Eg.the Julia numerical differential equations package is almost certainly
the best of any language (including Matlab, Python, Mathematica)

» http://docs.juliadiffeq.org/latest/

» In other languages, need expert C/C++/Fortran programmers to write
performance critical parts of ODE solvers.

» Ugly situation with callbacks: sure, your fast code is C/C++/Fortran. But
for ODEs, you want custom Python code for computing Jacobians,
logging, etc. This interacts terribly with C/C++/Fortran

» A great post on this:

» http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-

substitutes-for-julia/

http://docs.juliadiffeq.org/latest/
http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/
http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/

PART 2: JULIA

USED BY CELESTE PROJECT

» "Celeste had to be fast, so we considered C++, a
blend of Python and Cython, and Julia. Julia let us
write most of our program in a high-level, math-
inspired syntax, without requiring us to pass data
structures between programming languages,"” says
Jeffrey Regier (UC Berkeley Statistics), lead author on
the paper presenting the method.

‘Parallel Supercomputmg for
| Astronomy ;

‘ ¢
se Julia*on a NERSC supercomputer (650 000 c es) to speed astronomical image analysis 1,000x,
- catalog 188 millio t omic l (o] o} < ects 15 min te d d’l ve peak performance of 1.5 petaflops pér

N3{ell Astronomy «PREV i NEXT»
How can we help yot

In 1998, the Apache Point Observatory in New Mexico began imaging ‘
- L .

tart Frmrm Avrar DCos ~f+ha clazim » mrminacrt b Aatars e +hAa

PART 3: DIFFERENTIABLE
PROGRAMMING

PART 3: DIFFERENTIABLE PROGRAMMING

THE OLD DAYS (2013): CAFFE

C & GitHub, Inc. [US] | https://github.com/BVLC/caffe/blob/master/models/bvic_googlenet/train_val.prototxt

H Deep learning att.. [sebastianraschka... ["4 Search|Southby.. J® andy'sblog [E} Amazon.com: #1.. Source of pooling...

}
layer {
name: "loss3/loss3"

2405 type: "SoftmaxWithLoss"
bottom: "loss3/classifier"
bottom: "label"
top: "loss3/loss3"
loss_weight: 1

}
layer {
name: "loss3/top-1"
type: "Accuracy"
bottom: "loss3/classifier"
bottom: "label"

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: PYTORCH, TF 2.0

» Move towards differentiating through programs

» still hits the Python interpreter after every
operation

X = torch.randn(3, requires_grad=True)

y = X % 2
while y.data.noxrm() < 1000:
y =y *x2

print(y)

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA + SWIFT

» Build automatic differentiation into the language
at the compiler level

» differentiate any program!

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA + SWIFT

The really powerful advance is this: pervasive differentiability means all these techniques
snap together like lego bricks. Rather than always writing new programs for ML, we can
incorporate existing ones, enabling physics engines inside deep learning-based robotics
models. Where current reinforcement learning algorithms need to build a detailed model of
the external world from only a coarse-grained reward signal (which sounds like a brute force
problem if anything does), we can instead just drop in detailed, precise knowledge of physical

systems before training even begins.

project. But advances in language and compiler technology, especially automatic
differentiation, are bringing us closer to the holy grail: “just differentiate my game engine,

please.”

From: https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html

https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA + SWIFT

» Making CartPole environment
differentiable makes training vastly faster

The results speak for themselves. Where RL methods need to train for hundreds of episodes

before solving the problem, the DP model only needs around 5 episodes to win conclusively.

From: https://fluxml.ai/2019/03/05/dp-vs-rl.html

https://fluxml.ai/2019/03/05/dp-vs-rl.html

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA ZYGOTE

Zygote

Welcome! Zygote extends the Julia language to support differentiable programming. With Zygote you can
write down any Julia code you feel like - including using existing Julia packages - then get gradients and
optimise your program. Deep learning, ML and probabilistic programming are all different kinds of
differentiable programming that you can do with Zygote.

At least, that's the idea. We're still in beta so expect some adventures.

Taken from: https://fluxml.ai/Zygote.jl/latest/

https://fluxml.ai/Zygote.jl/latest/

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: SWIFT FOR TENSORFLOW

» Swift: released 2014
» Similar to Julia: compiles to LLVM
» Designed by Chris Lattner

» the main author of LLVM!

» he now heads the Swift for TensorFlow project at Google

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: SWIFT FOR TENSORFLOW

» Swift for TensorFlow
» build automatic differentiation into the Swift compiler

» "Differentiable programming gets first-class support in a general-purpose
programming language. Take derivatives of any function, or make custom
data structures differentiable at your fingertips."

» Google calls it "a next generation platform for deep learning and
differentiable programming". Possibly a successor to TensorFlow v2?

» https://www.tensorflow.org/swift

» Excellent motivation document: https://github.com/tensorflow/swift/blob/
master/docs/WhySwiftForTensorFlow.md

https://www.tensorflow.org/swift
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: SWIFT FOR TENSORFLOW

fast.ai Embracing Swift for Deep Learning

Written: 06 Mar 2019 by Jeremy Howard

Note from Jeremy: |If you want to join the next deep learning course at the University of
San Francisco, discussed below, please apply as soon as possible because it’s under 2
weeks away! You can apply here. At least a year of coding experience, and deep learning
experience equivalent to completing Practical Deep Learning for Coders is required.

Today at the TensorFlow Dev Summit we announced that two lessons in our next course will
cover Swift for TensorFlow. These lessons will be co-taught with the inventor of Swift, Chris
Lattner; together, we’ll show in the class how to take the first steps towards implementing an
equivalent of the fastai library in Swift for TensorFlow. We'll be showing how to get started
programming in Swift, and explain how to use and extend Swift for TensorFlow.

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

» Won best paper award at NeurlPS 2018

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute
{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

» Very simple idea: suppose you have an ODE

dh(t) _
2 = 1(8(1),t,0)

» The Euler discretization is:

h; 1 = hy + f(hy, 6;)

» Which is a ResNet! So ODE is result of making number ResNet
layers continuous

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

Residual Network ODE Network

5
4 !
-3
= ,
o, l ’
1 T /
070 5 _5 5
Input/Hidden/Output Input/Hidden/Output

Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

» A neat property for generative modelling:

The discretized equation (1) also appears in normalizing flows (Rezende and Mohamed, 2015) and
the NICE framework (Dinh et al., 2014). These methods use the change of variables theorem to
compute exact changes in probability if samples are transformed through a bijective function f:

det ﬂ

BZO (6)

z1 = f(zo) = logp(z1) = logp(zo) — log

Surprisingly, moving from a discrete set of layers to a continuous transformation simplifies the
computation of the change in normalizing constant:
Theorem 1 (Instantaneous Change of Variables). Let z(t) be a finite continuous random variable

with p(obabili.ty p.(z(t)) dependen.t on time. Let %2 = f(z(t), t) be a diﬁ”eren{ial equation .describ.ing
a continuous-in-time transformation of z(t). Assuming that f is uniformly Lipschitz continuous in z
and continuous in t, then the change in log probability also follows a differential equation,

0log p(z(t)) df
o - U (dz(t)) ®)

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

The core technical challenge: backpropagation
through differential equation solvers

Let's end by explaining the technical issue that needed a solution to make this all possible. The core
to any neural network framework is the ability to backpropagate derivatives in order to calculate the
gradient of the loss function with respect to the network'’s parameters. Thus if we stick an ODE solver
as a layer in a neural network, we need to backpropagate through it.

» Impossible to do in Python without reimplementing ODE
solvers

» Very easy in Julia: without needing to rewrite anything, can
immediately differentiate through any of ODE solvers in
DifferentialEquations.jl!

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

e LU vicw Juna 2eiIceuun [RIRIv] ravrnayecs ricip

test,jl REPL

D
p = param([2.2, 1.0,| 2.0, 0.4])
Ei params = Flux.Params([p])

function predict_rd()
diffeq_rd(p,reduction,prob,Tsit5(),saveat=0.1)

loss rd() = sum(abs2,x-1 for x in predict rd())

data = Iterators.repeated((), 100)

opt = ADAM(@.1) s Plots
cb = function ()

display(loss_rd())

display(plot(solve(remake(prob,p=Flux.data(p)),Tsit5(),saveat=0.1),ylim=(0,
A

cb()

Flux.train! (loss_rd, params, data, opt, cb = cb)

testjl 33:21 CRLF UTF-8 Julia €) GitHub -O-Git(0) Spaces(2) Main

Taken from: https://julialang.org/blog/2019/01/fluxdiffeq

https://julialang.org/blog/2019/01/fluxdiffeq

PART 4: 1S PYTHON
DOOMED?

PART 4: IS PYTHON DOOMED?

ECOSYSTEM

» Pythons ecosystem is vastly superior to Julia and
Swift

» Lack of an ecosystem doomed Lua Torch before...

Soumith Chintala &
@soumithchintala

Replying to @Viral_B_Shah

i do love Julia. A while ago @johnmyleswhite and | hacked
up some torch.jl. But the community is all with Python, just
cannot ignore that.

9:31PM - Oct 5, 2017 - Twitter Web Client

PART 4: IS PYTHON DOOMED?

BUT: JULIA AND SWIFT HAVE GREAT PYTHON SUPPORT
Seamless Python Interoperability

[4] import TensorFlow
import Python
$include "EnableIPythonDisplay.swift"

o let plt = Python.import("matplotlib.pyplot")
let np = Python.import ("numpy")

IPythonDisplay.shell.enable matplotlib("inline")
let x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))

plt.show()

Swift for TensorFlow

PART 4: IS PYTHON DOOMED?

IT DEPENDS

Soumith Chintala € @soumithchintala - Apr 7 v
A lot of folks ask me: what's the next mainstream ML software? What is PyTorch-
Next?

There's no magic answer, it depends on where the field goes. Software, Research

and Hardware go hand-in-hand -- iteratively doing exploration and exploitation.
Predictions as of today:

(1/4)
Q 9 1 97 Q 384 Ty
Soumith Chintala € @soumithchintala - Apr 7 v

- If we go big on GPs and PGMs, then | expect a mainstream Pyro / Edward.

- If we go back to 2nd order methods, something like Jax.

- If Graph ConvNets, then Julia -- for it's ability to build efficient fundamental data
structures in an interactive language.

(2/4)
Q 6 1 33 Q 202 T

PART 4: IS PYTHON DOOMED?

Soumith Chintala € @soumithchintala - Feb 19

Julia, Swift are great viable options.
Or, one can make Python cool enough ;-)

With MyPy-style static checking, torch.jit style compilation, the benefits might
be realized while staying in Python.

Q 7 n 4 Q 139 o

Yann LeCun
’ @ylecun

Replying to @soumithchintala and @jeremyphoward
Compiling Python (or a subset of it) is one (Lush-like) way
to doit.

Julia and Swift are nice.

another option, with the advantage of safe
ism

IT DEPENDS O

skip - A programming language to skip the things you have alread...

A programming language to skip the things you have already
J computed

&’ skiplang.com

Facebook’s chief Al scientist: Deep learning may need a new programming |...

Deep learning may need a new programming language that's more flexible
and easier to work with than Python, Facebook Al Research director Yann ...

& venturebeat.com Feb 19, 2019 - Twitter for Android

PART 4: 1S PYTHON DOOMED?

CONCLUSION + QUESTIONS

