
WILL JULIA OR SWIFT TAKE PYTHONS
MACHINE LEARNING CROWN?

SEBASTIAN BODENSTEIN

PART 1: PYTHON

PART 1: PYTHON

PYTHON IS EATING THE WORLD

Taken from: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

PART 1: PYTHON

PYTHON IS EATING THE WORLD

PART 1: PYTHON

ITS COMPETITORS

Taken from: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

PART 1: PYTHON

PYTHON PROBLEMS: EXECUTION SPEED
Python
def fib(n):
 if n<2:
 return n
 return fib(n-1)+fib(n-2)

C
int fib(int n) {
 return n < 2 ? n : fib(n-1) + fib(n-2);
}

Julia
fib(n) = n < 2 ? n : fib(n-1) + fib(n-2)

▸ Question: how much longer will it take Python to compute fib(20) than C?

▸ ~100x

PART 1: PYTHON

PYTHON PROBLEMS: EXECUTION SPEED

▸ Writing fast Python code effectively requires a second language:

▸ C/C++ (eg. PyTorch and TensorFlow are mostly written in C++)

▸ There is Numba, Pythran, etc: allow the compilation of a small subset of Python.

▸ Need to learn what this subset is, and only use that!

▸ This is the infamous two-language problem

▸ bad for developer productivity

PART 1: PYTHON

PYTHON PROBLEMS: EXECUTION SPEED

PART 1: PYTHON

PYTHON PROBLEMS: GIL

Taken from: Understanding the Python GIL, David Beazley, PyCon 2010

PART 1: PYTHON

PYTHON PROBLEMS: GIL
import threading
import time

def countdown(n):
 while n > 0:
 n -= 1

COUNT = 100000000 # 100 million

This take ~5s
countdown(COUNT)

Q: How long does this take?
t1 = threading.Thread(target=countdown,args=(COUNT//2,))
t2 = threading.Thread(target=countdown,args=(COUNT//2,))
t1.start(); t2.start()
t1.join(); t2.join()

PART 1: PYTHON

PYTHON PROBLEMS: GIL

▸ ANSWER:

▸ ~5s

▸ Why?

▸ The GIL makes sure that only one thread runs in the interpreter at
once

▸ Simplifies low-level details, eg. memory management

▸ Single-threaded Moores Law is dead:

▸ need parallelism to take advantage of all future hardware speedups

PART 2: JULIA

PART 2: JULIA

JULIA MISSION STATEMENT
"We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others
Rubyists, still others Perl hackers. There are those of us who used Mathematica before we
could grow facial hair...

We love all of these languages; they are wonderful and powerful. For the work we do —
scientific computing, machine learning, data mining, large-scale linear algebra, distributed
and parallel computing — each one is perfect for some aspects of the work and terrible for
others. Each one is a trade-off.

We are greedy: we want more.

We want a language that’s open source, with a liberal license. We want the speed of C with
the dynamism of Ruby... We want something as usable for general programming as Python,
as easy for statistics as R, as natural for string processing as Perl, as powerful for linear
algebra as Matlab... Something that is dirt simple to learn, yet keeps the most serious
hackers happy. We want it interactive and we want it compiled.

(Did we mention it should be as fast as C?)" ~ Why We Created Julia, J Bezanson et al

PART 2: JULIA

JULIA MISSION STATEMENT

▸ Designed to solve the two-language problem

▸ virtually all Julia packages are written in pure Julia!

▸ Release Dates:

▸ Python: 1991

▸ Julia: 2012

▸ Julia downloads to date:

▸ 3.2 million

PART 2: JULIA

THE 100

The 100 is a SciFi set in 150 years time. The source code of one of the AIs was Julia! https://
juliacomputing.com/communication/2017/09/19/julia-the-ai-language-for-next-150-years.html

https://juliacomputing.com/communication/2017/09/19/julia-the-ai-language-for-next-150-years.html
https://juliacomputing.com/communication/2017/09/19/julia-the-ai-language-for-next-150-years.html

PART 2: JULIA

DEMO

PART 2: JULIA

ADVANTAGES
▸ The compilability of Julia mainly benefits package developers:

▸ Eg. the Julia numerical differential equations package is almost certainly
the best of any language (including Matlab, Python, Mathematica)

▸ http://docs.juliadiffeq.org/latest/

▸ In other languages, need expert C/C++/Fortran programmers to write
performance critical parts of ODE solvers.

▸ Ugly situation with callbacks: sure, your fast code is C/C++/Fortran. But
for ODEs, you want custom Python code for computing Jacobians,
logging, etc. This interacts terribly with C/C++/Fortran

▸ A great post on this:

▸ http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-
substitutes-for-julia/

http://docs.juliadiffeq.org/latest/
http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/
http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/

PART 2: JULIA

USED BY CELESTE PROJECT
▸ "Celeste had to be fast, so we considered C++, a

blend of Python and Cython, and Julia. Julia let us
write most of our program in a high-level, math-
inspired syntax, without requiring us to pass data
structures between programming languages," says
Jeffrey Regier (UC Berkeley Statistics), lead author on
the paper presenting the method.

PART 3: DIFFERENTIABLE
PROGRAMMING

PART 3: DIFFERENTIABLE PROGRAMMING

THE OLD DAYS (2013): CAFFE

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: PYTORCH, TF 2.0

▸ Move towards differentiating through programs

▸ still hits the Python interpreter after every
operation

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA + SWIFT

▸ Build automatic differentiation into the language
at the compiler level

▸ differentiate any program!

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA + SWIFT

From: https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html

https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA + SWIFT

From: https://fluxml.ai/2019/03/05/dp-vs-rl.html

▸ Making CartPole environment
differentiable makes training vastly faster

https://fluxml.ai/2019/03/05/dp-vs-rl.html

PART 3: DIFFERENTIABLE PROGRAMMING

THE FUTURE: JULIA ZYGOTE

Taken from: https://fluxml.ai/Zygote.jl/latest/

https://fluxml.ai/Zygote.jl/latest/

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: SWIFT FOR TENSORFLOW

▸ Swift: released 2014

▸ Similar to Julia: compiles to LLVM

▸ Designed by Chris Lattner

▸ the main author of LLVM!

▸ he now heads the Swift for TensorFlow project at Google

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: SWIFT FOR TENSORFLOW
▸ Swift for TensorFlow

▸ build automatic differentiation into the Swift compiler

▸ "Differentiable programming gets first-class support in a general-purpose
programming language. Take derivatives of any function, or make custom
data structures differentiable at your fingertips."

▸ Google calls it "a next generation platform for deep learning and
differentiable programming". Possibly a successor to TensorFlow v2?

▸ https://www.tensorflow.org/swift

▸ Excellent motivation document: https://github.com/tensorflow/swift/blob/
master/docs/WhySwiftForTensorFlow.md

https://www.tensorflow.org/swift
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

PART 3: DIFFERENTIABLE PROGRAMMING

TODAY: SWIFT FOR TENSORFLOW

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

▸ Won best paper award at NeurIPS 2018

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

▸ Very simple idea: suppose you have an ODE

▸ The Euler discretization is:

▸ Which is a ResNet! So ODE is result of making number ResNet
layers continuous

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

▸ A neat property for generative modelling:

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

▸ Impossible to do in Python without reimplementing ODE
solvers

▸ Very easy in Julia: without needing to rewrite anything, can
immediately differentiate through any of ODE solvers in
DifferentialEquations.jl!

PART 3: DIFFERENTIABLE PROGRAMMING

CASE STUDY: NEURAL ODE

Taken from: https://julialang.org/blog/2019/01/fluxdiffeq

https://julialang.org/blog/2019/01/fluxdiffeq

PART 4: IS PYTHON
DOOMED?

PART 4: IS PYTHON DOOMED?

ECOSYSTEM

▸ Pythons ecosystem is vastly superior to Julia and
Swift

▸ Lack of an ecosystem doomed Lua Torch before...

PART 4: IS PYTHON DOOMED?

BUT: JULIA AND SWIFT HAVE GREAT PYTHON SUPPORT

Swift for TensorFlow

PART 4: IS PYTHON DOOMED?

IT DEPENDS

PART 4: IS PYTHON DOOMED?

IT DEPENDS

PART 4: IS PYTHON DOOMED?

CONCLUSION + QUESTIONS

